We study the Mixed Capacitated General Routing Problem (MCGRP) in which a fleet of capacitated vehicles has to serve a set of requests by traversing a mixed weighted graph. The requests may be located on nodes, edges, and arcs. The problem has theoretical interest because it is a generalization of the Capacitated Vehicle Routing Problem (CVRP), the Capacitated Arc Routing Problem (CARP), and the General Routing Problem (GRP). It is also of great practical interest since it is often a more accurate model for real world cases than its widely studied specializations, particularly for so-called street routing applications. Examples are urban-waste collection, snow removal, and newspaper delivery. We propose a new Iterated Local Search metaheuristic for the problem that also includes vital mechanisms from Adaptive Large Neighborhood Search combined with further intensification through local search. The method utilizes selected, tailored, and novel local search and large neighborhood search operators, as well as a new local search strategy. Computational experiments show that the proposed metaheuristic is highly effective on five published benchmarks for the MCGRP. The metaheuristic yields excellent results also on seven standard CARP datasets, and good results on four well-known CVRP benchmarks.
Given a set of identical capacitated bins, a set of weighted items and a set of precedences among such items, we are interested in determining the minimum number of bins that can accommodate all items and can be ordered in such a way that all precedences are satised. The problem, denoted as the Bin Packing Problem with Precedence Constraints (BPP-P), has a very intriguing combinatorial structure and models many assembly and scheduling issues.According to our knowledge the BPP-P has received little attention in the literature, and in this paper we address it for the first time with exact solution methods. In particular, we develop reduction criteria, a large set of lower bounds, a Variable Neighborhood Search upper bounding technique and a branch-and-bound algorithm. We show the eectiveness of the proposed algorithms by means of extensive computational tests on benchmark instances and comparison with standard integer linear programming techniques
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.