This paper presents a detailed comparative analysis between synchronous and induction machines for distributed generation applications. The impacts of these generators on the distribution network performance are determined and compared by using computational simulations. The technical factors analyzed are steady-state voltage profile, electrical power losses, voltage stability, transient stability, voltage sags during unbalanced faults, and short-circuit currents. The results showed that the best technical choice depends on the network characteristics, i.e., the main factors that may limit the penetration level of distributed generation.
Abstract-Determination of the utility harmonic impedance based on measurements is a significant task for utility powerquality improvement and management. Compared to those well-established, accurate invasive methods, the noninvasive methods are more desirable since they work with natural variations of the loads connected to the point of common coupling (PCC), so that no intentional disturbance is needed. However, the accuracy of these methods has to be improved. In this context, this paper first points out that the critical problem of the noninvasive methods is how to select the measurements that can be used with confidence for utility harmonic impedance calculation. Then, this paper presents a new measurement technique which is based on the complex data-based least-square regression, combined with two techniques of data selection. Simulation and field test results show that the proposed noninvasive method is practical and robust so that it can be used with confidence to determine the utility harmonic impedances.Index Terms-Harmonic impedance, noninvasive method, power quality (PQ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.