[1] Recent observations of the outflowing Mediterranean water collected near the bottom in key points of the Strait of Gibraltar show the existence of a seasonal cycle with warmer and lighter waters leaving the Mediterranean Sea in winter and cooler and denser waters in spring early summer. The amplitude of the signal is around 5 10 À2°C for potential temperature and 1.5 10 À2 for potential density, salinity hardly showing seasonal fluctuations. The outflow also shows a seasonal cycle with maximum volume transport in April, in coincidence with the minimum of the signal of potential temperature. A simple analysis of the composition of the outflow in terms of the main water masses of the western Mediterranean basin and its comparison with climate indicators suggests that the seasonal cycle follows the annual process of the Western Mediterranean Deep Water formation that replenish the deep portion of the basin by the end of winter and rises the level of the deep water reservoir, facilitating the suction of cooler and denser water from the Mediterranean over the sills of the Strait. From this time onwards, the data show a smooth warming that would be explained by the progressive fall of the level of the Western Mediterranean Deep Water as it is drained out the Mediterranean, which would leave warmer water available for suction. The process is asymmetric in the sense that the transition from high to low temperature is completed in a short period while the progressive warming spans a longer period.
The modeling of large-amplitude internal waves (LAIWs) propagating in the Strait of Gibraltar is carried out using a fully nonlinear nonhydrostatic numerical model. The focus of the modeling efforts was on three-dimensional peculiarities of LAIW evolution, namely, cross-strait variability, interaction with lateral boundaries (including wave breaking and water mixing), radiation of secondary waves from orographic features, and interaction of secondary scattered internal waves.The along-channel propagation of packets of LAIWs reveals remarkable three-dimensional behavior. Due to the Coriolis force and multiple reflections from the lateral boundaries, the largest leading LAIW loses its energy much faster than that in the packet tail, which captures the scattered energy from the leading wave as it propagates and grows in amplitude. As a result of the energy transfer, the initially rank-ordered wave packet loses its regular structure to evolve into a non-rank-ordered wave train. In situ data collected in the eastern part of the Strait of Gibraltar confirm the idea that the non-rank-ordered structure is a common feature of internal wave packets emerging from the strait into the Alboran Sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.