Most synthetic microswimmers do not reach the autonomy of their biological counterparts in terms of energy supply and diversity of motions. Here, this work reports the first all‐aqueous droplet swimmer powered by self‐generated polyelectrolyte gradients, which shows memory‐induced chirality while self‐solidifying. An aqueous solution of surface tension–lowering polyelectrolytes self‐solidifies on the surface of acidic water, during which polyelectrolytes are gradually emitted into the surrounding water and induce linear self‐propulsion via spontaneous symmetry breaking. The low diffusion coefficient of the polyelectrolytes leads to long‐lived chemical trails which cause memory effects that drive a transition from linear to chiral motion without requiring any imposed symmetry breaking. The droplet swimmer is capable of highly efficient removal (up to 85%) of uranium from aqueous solutions within 90 min, benefiting from self‐propulsion and flow‐induced mixing. These results provide a route to fueling self‐propelled agents which can autonomously perform chiral motion and collect toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.