Planar polarity is a fundamental property of epithelia in animals and plants. In Drosophila it depends on at least two sets of genes: one set, the Ds system, encodes the cadherins Dachsous (Ds) and Fat (Ft), as well as the Golgi protein Four-jointed. The other set, the Stan system, encodes Starry night (Stan or Flamingo) and Frizzled. The prevailing view is that the Ds system acts via the Stan system to orient cells. However, using the Drosophila abdomen, we find instead that the two systems operate independently: each confers and propagates polarity, and can do so in the absence of the other. We ask how the Ds system acts; we find that either Ds or Ft is required in cells that send information and we show that both Ds and Ft are required in the responding cells. We consider how polarity may be propagated by Ds-Ft heterodimers acting as bridges between cells.
The integument of the Drosophila adult abdomen bears oriented hairs and bristles that indicate the planar polarity of the epidermal cells. We study four polarity genes, frizzled (fz), prickle (pk), Van gogh/strabismus (Vang/stbm) and starry night/flamingo (stan/fmi), and note what happens when these genes are either removed or overexpressed in clones of cells. The edges of the clones are interfaces between cells that carry different amounts of gene products, interfaces that can cause reversals of planar polarity in the clone and wild-type cells outside them. To explain, we present a model that builds on our earlier picture of a gradient of X, the vector of which specifies planar polarity and depends on two cadherin proteins, Dachsous and Fat. We conjecture that the X gradient is read out, cell by cell, as a scalar value of Fz activity, and that Pk acts in this process, possibly to determine the sign of the Fz activity gradient.We discuss evidence that cells can compare their scalar readout of the level of X with that of their neighbours and can set their own readout towards an average of those. This averaging, when it occurs near the edges of clones, changes the scalar response of cells inside and outside the clones, leading to new vectors that change polarity. The results argue that Stan must be present in both cells being compared and acts as a conduit between them for the transfer of information. And also that Vang assists in the receipt of this information. The comparison between neighbours is crucial, because it gives the vector that orients hairs -these point towards the neighbour cell that has the lowest level of Fz activity.Recently, it has been shown that, for a limited period shortly before hair outgrowth in the wing, the four proteins we study, as well as others, become asymmetrically localised in the cell membrane, and this process is thought to be instrumental in the acquisition of cell polarity. However, some results do not fit with this view -we suggest that these localisations may be more a consequence than a cause of planar polarity.
In multicellular organisms, cells are polarized in the plane of the epithelial sheet, revealed in some cell types by oriented hairs or cilia. Many of the underlying genes have been identified in Drosophila melanogaster and are conserved in vertebrates. Here we dissect the logic of planar cell polarity (PCP). We review studies of genetic mosaics in adult flies - marked cells of different genotypes help us to understand how polarizing information is generated and how it passes from one cell to another. We argue that the prevailing opinion that planar polarity depends on a single genetic pathway is wrong and conclude that there are (at least) two independently acting processes. This conclusion has major consequences for the PCP field.
This discovery impacts on models of how cells read polarity. At the heart of one class of models is the hypothesis that cell polarity is determined by the vector of a morphogen gradient. Here, we present evidence that cell polarity in the abdomen depends on at least two protein gradients (Fj and Ds), each of which is reflected at compartment borders. Consequently, these gradients have opposing slopes in the two compartments. Because all polarized structures made by abdominal cells point posteriorly, we surmise that cells in each compartment are programmed to interpret these protein gradients with opposite signs, pointing up the gradient in one compartment and down the gradient in the other.
SummaryThe Drosophila genes fat (ft) and dachsous (ds) encode large atypical cadherins that collaborate to coordinately polarize cells in the plane of the epithelium (planar cell polarity) and to affect growth via the Warts/Hippo pathway [1–3]. Ft and Ds form heterodimeric bridges that convey polarity information from cell to cell [4–7]. four-jointed (fj) is a modulator of Ft/Ds activity that acts in a graded fashion in the abdomen, eye, and wing [8–11]. Genetic evidence indicates that Fj acts via Ds and/or Ft [4, 6–9, 12], and here we demonstrate that Fj can act independently on Ds and on Ft. It has been reported that Fj has kinase activity and can phosphorylate a subset of cadherin domains of both Ft and Ds in vitro [13]. We have used both cell and in vitro assays to measure binding between Ft and Ds. We find that phosphorylation of Ds reduces its affinity for Ft in both of these assays. By expressing forms of Ds that lack the defined phosphorylation sites or have phosphomimetic amino acids at these positions, we demonstrate that effects of Fj on wing size and planar polarity can be explained by Fj phosphorylating these sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.