Innate and adaptive immune responses lead to wound healing by regulating a complex series of events promoting cellular cross-talk. An inflammatory response is presented with its characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive polymers like chitosan, polyvinylpyrrolidone, alginate, and poly(ε-caprolactone) can be used to create biocompatible and biodegradable scaffolds. These processed thermo-responsive biomaterials possess 3D architectures similar to human structures, providing physical support for cell growth and tissue regeneration. Furthermore, these structures are used as novel drug delivery systems. Locally heated tumors above the polymer lower the critical solution temperature and can induce its conversion into a hydrophobic form by an entropy-driven process, enhancing drug release. When the thermal stimulus is gone, drug release is reduced due to the swelling of the material. As a result, these systems can contribute to the wound healing process in accelerating tissue healing, avoiding large scar tissue, regulating the inflammatory response, and protecting from bacterial infections. This paper integrates the relevant reported contributions of bioengineered scaffolds composed of smart thermo-responsive polymers for drug delivery applications in wound healing. Therefore, we present a comprehensive review that aims to demonstrate these systems’ capacity to provide spatially and temporally controlled release strategies for one or more drugs used in wound healing. In this sense, the novel manufacturing techniques of 3D printing and electrospinning are explored for the tuning of their physicochemical properties to adjust therapies according to patient convenience and reduce drug toxicity and side effects.
Objective: This study aimed to develop a microstructured lipid carrier that improves the rate of dissolution of the active pharmaceutical ingredient (API) Albendazole. Methods: A solvent diffusion method was used for the development of microstructured lipid carriers. The developed carriers were characterized by optical microscopy, infrared spectroscopy, differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and dissolution testing. Results: The morphology of the carriers was irregular, and their size tends to decrease with the addition of modifiers. Furthermore, the diffractograms and the thermograms indicated a loss of crystallinity. The thermograms and infrared spectra showed that there are not chemical incompatibilities between the API and the excipients. When the lipid carrier particles were modified with Aerosil® 200 (specifically when using this excipient at a level of 6% w/w), dissolution was increased up to 85.96±1.17 % of the drug content as per USP test for Albendazole tablets in comparison with 36.13±0.52 % for a lipid carrier formulation without modifiers. Conclusion: It was demonstrated that it is possible to develop a modified lipid carrier that improves the dissolution rate of an API with a low solubility, which was related to the amorphization of the API crystalline structure.
innate and adaptive immune responses lead to wound healing by regulating a complex series of events promoting cellular cross-talk. An inflammatory response is presented with its characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive polymers like chitosan can be used to create biocompatible and biodegradable scaffolds with 3D architectures similar to human structures, allowing their efficient and safe use as tissue engineering and drug delivery systems in chronic wounds. Locally heated tumors above polymer lower critical solution temperature can induce its conversion into a hydrophobic form, enhancing drug release until the thermal stimulus is gone, where a lower release is due to the swelling of the material. This paper integrates the relevant reported contributions of bioengineered scaffolds for thermo-responsive drug delivery in wound healing. Therefore, we present a comprehensive review that aims to demonstrate the capacity of these systems to provide spatially and temporally controlled release strategies for one or more drugs used in wound healing. In this sense, the novel manufacturing techniques of 3D-printing and electrospinning are explored for the tuning of their physicochemical properties to adjust therapies according to the patient’s convenience, as well as reduce drug toxicity and side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.