Ancient DNA from the bone remains of 25 out of 28 pre-Columbian individuals from the Late Classic-Postclassic Maya site of Xcaret, Quintana Roo, was recovered, and mitochondrial DNA (mtDNA) was amplified by using the polymerase chain reaction. The presence of the four founding Amerindian mtDNA lineages was investigated by restriction analysis and by direct sequencing in selected individuals. The mtDNA lineages A, B, and C were found in this population. Eighty-four percent of the individuals were lineage A, whereas lineages B and C were present at low frequencies, 4% and 8%, respectively. Lineage D was absent from our sample. One individual did not possess any of the four lineages. Six skeletons out of 7 dated from the Late Classic period were haplotype A, whereas 11 skeletons out of 16 dated from the Postclassic period were also haplotype A. The distribution of mtDNA lineages in the Xcaret population contrasts sharply with that found in ancient Maya from Copán, which lack lineages A and B. On the other hand, our results resemble more closely the frequencies of mtDNA lineages found in contemporary Maya from the Yucatán Peninsula and in other Native American contemporary populations of Mesoamerican origin.
The complex geographical scenario of Mexico allowed the cultural diversification and development of multiple cultures such as Tolteca, Teotihuacan, Mexica, and Maya, among others. Despite this rich cultural heritage, radiometric dating of Mexican cultural samples with radiocarbon (14C) began only in the 1980s and with accelerator mass spectrometry (AMS) in 2013. Analysis of 14C with AMS is the most widely used technique to date archaeological objects and cultural heritage. Since 2013, the Accelerator Mass Spectrometry Laboratory (LEMA) facility of the Institute of Physics at UNAM (IF-UNAM) has supported archaeological research in Mexico, but also investigation in other areas such as geology, physics, chemistry, and environmental sciences through the analysis of 14C, 10Be, 26Al, 129I, and Pu. The absolute dating with 14C continues to be the core of LEMA’s work, where different geographical scenarios of the country and climatic conditions present very diverse analytical challenges. This work presents a basic description of the AMS system of the LEMA laboratory and describes some applications that are currently being developed.
C. Interplay between nucleonic and partonic degrees of freedom: SRC effects on nuclear EOS, heavy-ion reactions, and neutron stars D. High-density symmetry energy above 2n 0 E. Density-dependence of neutron-proton effective mass splitting in neutron-rich matter
Senescence is an important trait in maize (Zea mais L.), a key crop that provides nutrition values and a renewable source of bioenergy worldwide. Genome-wide association studies (GWAS) can be used to identify causative genetic variants that influence the major physiological measures of senescence, which is used by plants as a defense mechanism against abiotic and biotic stresses affecting its performance. We measured four physiological and two agronomic traits that affect senescence. Six hundred seventy-two recombinant inbred lines (RILs) were evaluated in two consecutive years. Thirty-six candidate genes were identified by genome-wide association study (GWAS), and 11 of them were supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport, and sink activity. We identified a candidate gene, Zm00001d043586, significantly associated with chlorophyll, and independently studied its transcription expression in an independent panel. Our results showed that Zm00001d043586 affects chlorophyl rate degradation, a key determinant of senescence, at late plant development stages. These results contribute to better understand the genetic relationship of the important trait senescence with physiology related parameters in maize and provide new putative molecular markers that can be used in marker assisted selection for line development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.