To cope with the challenges that low light conditions produce in images, photographers tend to use the light provided by the camera flash to get better illumination. Nevertheless, harsh shadows and non-uniform illumination can arise from using a camera flash, especially in low light conditions. Previous studies have focused on normalizing the lighting on flash images; however, to the best of our knowledge, no prior studies have examined the sideways shadows removal, reconstruction of overexposed areas, and the generation of synthetic ambient shadows or natural tone of scene objects. To provide more natural illumination on flash images and ensure high-frequency details, we propose a generative adversarial network in a guided conditional mode. We show that this approach not only generates natural illumination but also attenuates harsh shadows, simultaneously generating synthetic ambient shadows. Our approach achieves promising results on a custom FAID dataset, outperforming our baseline studies. We also analyze the components of our proposal and how they affect the overall performance and discuss the opportunities for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.