The advanced metering infrastructure (AMI) is a compulsory component of the future smart grid; it not only provides near real-time two-way communication between the consumers and the utility but also gives an opportunity to third parties to provide relevant value-added services to the consumers to improve the user satisfaction. However, existing services require the consumers share their private energy data with other parties, which has potential privacy risks. To better balance the excellent quality of the services and privacy guarantee, a novel differential private federated learning-based third-party service platform is proposed. Instead of sending the original energy data to the cloud server, the central server in the proposed scheme only collects the model parameters, which are trained locally inside the consumers’ houses. Then the collected parameters are aggregated differential privately to eliminate the identity of individuals, and the aggregated parameters are used to update the central model and improve the model performance. Furthermore, a novel attention-based bidirectional long short-term memory neural network model is adopted to make predictions. In the case study, a residential short term load forecasting task is implemented to evaluate the performance of the proposed model; from the simulation results, the conclusion is made that the proposed model can achieve similar accuracy as the typical centralized model and better control the privacy loss flexibly at the same time. <br>
The advanced metering infrastructure (AMI) is a compulsory component of the future smart grid; it not only provides near real-time two-way communication between the consumers and the utility but also gives an opportunity to third parties to provide relevant value-added services to the consumers to improve the user satisfaction. However, existing services require the consumers share their private energy data with other parties, which has potential privacy risks. To better balance the excellent quality of the services and privacy guarantee, a novel differential private federated learning-based third-party service platform is proposed. Instead of sending the original energy data to the cloud server, the central server in the proposed scheme only collects the model parameters, which are trained locally inside the consumers’ houses. Then the collected parameters are aggregated differential privately to eliminate the identity of individuals, and the aggregated parameters are used to update the central model and improve the model performance. Furthermore, a novel attention-based bidirectional long short-term memory neural network model is adopted to make predictions. In the case study, a residential short term load forecasting task is implemented to evaluate the performance of the proposed model; from the simulation results, the conclusion is made that the proposed model can achieve similar accuracy as the typical centralized model and better control the privacy loss flexibly at the same time. <br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.