Pancreatic cancer is one of the most lethal cancers worldwide due to its symptoms, early metastasis, and chemoresistance. Thus, the mechanisms contributing to pancreatic cancer progression require further exploration. Circadian rhythms are the daily oscillations of multiple biological processes regulated by an endogenous clock. Several evidences suggest that the circadian clock may play an important role in the cell cycle, cell proliferation and apoptosis. In addition, timing of chemotherapy or radiation treatment can influence the efficacy and toxicity treatment. Here, we revisit the studies on circadian clock as an emerging target for therapy in pancreatic cancer. We highlight those potential circadian genes regulators that are commonly affected in pancreatic cancer according to most recent reports.
Heme oxygenase 1 (HO-1) is the rate-limiting enzyme of heme oxidative degradation, generating carbon monoxide (CO), free iron, and biliverdin. HO-1, a stress inducible enzyme, is considered as an anti-oxidative and cytoprotective agent. As many studies suggest, HO-1 is highly expressed in the gastrointestinal tract where it is involved in the response to inflammatory processes, which may lead to several diseases such as pancreatitis, diabetes, fatty liver disease, inflammatory bowel disease, and cancer. In this review, we highlight the pivotal role of HO-1 and its downstream effectors in the development of disorders and their beneficial effects on the maintenance of the gastrointestinal tract health. We also examine clinical trials involving the therapeutic targets derived from HO-1 system for the most common diseases of the digestive system.
Colorectal cancer (CRC) is one of the most common tumours in developed countries. Although its incidence and mortality rates have decreased, its prognosis has not changed, and a high percentage of patients with CRC develop relapse (metachronous metastasis, MM, or local recurrence, LR) during their disease. The identification of these patients is very important for their correct management, but the lack of prognostic markers makes it difficult. Given the connection between circadian disruption and cancer development and progression, we aimed to analyse the prognostic significance of core circadian proteins in CRC. We measured the expression of PER1-3, CRY1-2, BMAL1 and NR1D2 in a cohort of CRC patients by immunohistochemistry (IHC) and analysed their prognostic potential in this disease. A low expression of PER2 and BMAL1 was significantly associated with metastasis at the moment of disease diagnosis, whereas a high expression of CRY1 appeared as an independent prognostic factor of MM development. A high expression of NR1D2 appeared as an independent prognostic factor of LR development after disease diagnosis. Moreover, patients with a low expression of BMAL1 and a high expression of CRY1 showed lower OS and DFS at five years. Although these markers need to be validated in larger and different ethnic cohorts, the simplicity of IHC makes these proteins candidates for personalizing CRC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.