Endothelial cells (EC) from diabetic BioBreeding (BB) rats have an impaired ability to produce NO. This deficiency is not due to a defect in the constitutive isoform of NO synthase in EC (ecNOS) or alterations in intracellular calcium, calmodulin, NADPH or arginine levels. Instead, ecNOS cannot produce sufficient NO because of a deficiency in tetrahydrobiopterin (BH(4)), a cofactor necessary for enzyme activity. EC from diabetic rats exhibited only 12% of the BH(4) levels found in EC from normal animals or diabetes-prone animals which did not develop disease. As a result, NO synthesis by EC of diabetic rats was only 18% of that for normal animals. Increasing BH(4) levels with sepiapterin increased NO production, suggesting that BH(4) deficiency is a metabolic basis for impaired endothelial NO synthesis in diabetic BB rats. This deficiency is due to decreased activity of GTP-cyclohydrolase I, the first and rate-limiting enzyme in the de novo biosynthesis of BH(4). GTP-cyclohydrolase activity was low because of a decreased expression of the protein in the diabetic cells.
The SLC4A10 gene product, commonly known as NCBE, is highly expressed in rodent brain and has been characterized by others as a Na ؉ -driven Cl-HCO 3 exchanger. However, some of the earlier data are not consistent with Na ؉ -driven Cl-HCO 3 exchange activity. In the present study, northern blot analysis showed that, also in humans, NCBE transcripts are predominantly expressed in brain. In some human NCBE transcripts, splice cassettes A and/or B, originally reported in rats and mice, are spliced out. In brain cDNA, we found evidence of a unique partial splice of cassette B that is predicted to produce an NCBE protein with a novel C terminus containing a protein kinase C phosphorylation site. We used pH-sensitive microelectrodes to study the molecular physiology of human NCBE expressed in Xenopus oocytes. In agreement with others we found that NCBE mediates the 4,4-diisothiocyanato-stilbene-2,2-disulfonic acid-sensitive, Na ؉ -dependent transport of HCO 3 ؊ . For the first time, we demonstrated that this transport process is electroneutral. Using Cl ؊ -sensitive microelectrodes positioned at the oocyte surface, we found that, unlike both human and squid Na ؉ -driven Cl-HCO 3 exchangers, human NCBE does not normally couple the net influx of HCO 3 ؊ to a net efflux of Cl ؊ .Moreover we found that that the 36 Cl efflux from NCBE-expressing oocytes, interpreted by others to be coupled to the influx of Na ؉ and HCO 3 ؊ , actually represents a CO 2 /HCO 3 ؊ -stimulated Cl ؊ self-exchange not coupled to either Na ؉ or net HCO 3 ؊ transport. We propose to rename NCBE as the second electroneutral Na/HCO 3 cotransporter, NBCn2.
NCBE (SLC4A10) is a member of the SLC4 family of bicarbonate transporters, several of which play important roles in intracellular-pH regulation and transepithelial transport. Here we characterize a new antibody that was generated in rabbit against a fusion protein consisting of maltose-binding protein and the first 135 amino acids (aa) of the N-terminus of human NCBE. Western blotting-both of purified peptides representing the initial ~120aa of the transporters and of full-length transporters expressed in Xenopus oocytes-demonstrated that the antibody is specific for NCBE versus the two most closely related proteins, NDCBE (SLC4A8) and NBCn1 (SLC4A7). Western blotting of tissue in four regions of adult mouse brain indicates that NCBE is expressed most abundantly in cerebral cortex (CX), cerebellum (CB) and hippocampus (HC), and less so in subcortex (SCX). NCBE protein was present in CX, CB, and HC microdissected to avoid choroid plexus. Immunocytochemistry shows that NCBE is present at the basolateral membrane of E18 fetal and adult choroid plexus. NCBE protein is present by western blot and immunocytochemistry in cultured and freshly dissociated HC neurons but not astrocytes. By western blot, nearly all NCBE in mouse and rat brain is highly N-glycosylated (~150 kDa). PNGase F reduces the MW of natural NCBE in mouse brain or human NCBE expressed in oocytes to approximately the predicted MW of the unglycosylated protein. In oocytes, mutating any one of the three consensus N-glycosylation sites reduces glycosylation of the other two, and the triple mutant exhibits negligible functional expression.
Endothelial cells (EC) from diabetic BioBreeding (BB) rats have an impaired ability to produce NO. This deficiency is not due to a defect in the constitutive isoform of NO synthase in EC (ecNOS) or alterations in intracellular calcium, calmodulin, NADPH or arginine levels. Instead, ecNOS cannot produce sufficient NO because of a deficiency in tetrahydrobiopterin (BH4), a cofactor necessary for enzyme activity. EC from diabetic rats exhibited only 12% of the BH4 levels found in EC from normal animals or diabetes-prone animals which did not develop disease. As a result, NO synthesis by EC of diabetic rats was only 18% of that for normal animals. Increasing BH4 levels with sepiapterin increased NO production, suggesting that BH4 deficiency is a metabolic basis for impaired endothelial NO synthesis in diabetic BB rats. This deficiency is due to decreased activity of GTP-cyclohydrolase I, the first and rate-limiting enzyme in the de novo biosynthesis of BH4. GTP-cyclohydrolase activity was low because of a decreased expression of the protein in the diabetic cells.
Microvascular endothelial cells involved in angiogenesis are exposed to an acidic environment that is not conducive for growth and survival. These cells must exhibit a dynamic intracellular (cytosolic) pH (pHcyt) regulatory mechanism to cope with acidosis, in addition to the ubiquitous Na+/H+ exchanger and HCO3−-based H+-transporting systems. We hypothesize that the presence of plasmalemmal vacuolar-type proton ATPases (pmV-ATPases) allows microvascular endothelial cells to better cope with this acidic environment and that pmV-ATPases are required for cell migration. This study indicates that microvascular endothelial cells, which are more migratory than macrovascular endothelial cells, express pmV-ATPases. Spectral imaging microscopy indicates a more alkaline pHcyt at the leading than at the lagging edge of microvascular endothelial cells. Treatment of microvascular endothelial cells with V-ATPase inhibitors decreases the proton fluxes via pmV-ATPases and cell migration. These data suggest that pmV-ATPases are essential for pHcyt regulation and cell migration in microvascular endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.