Corneal transplantation has been proven effective for returning the gift of sight to those affected by corneal disorders such as opacity, injury, and infections that are a leading cause of blindness. Immune privilege plays an important role in the success of corneal transplantation procedures; however, immune rejection reactions do occur, and they, in conjunction with a shortage of corneal donor tissue, continue to pose major challenges. Corneal immune privilege is important to the success of corneal transplantation and closely related to the avascular nature of the cornea. Corneal avascularity may be disrupted by the processes of angiogenesis and lymphangiogenesis, and for this reason, these phenomena have been a focus of research in recent years. Through this research, therapies addressing certain rejection reactions related to angiogenesis have been developed and implemented. Corneal donor tissue shortages also have been addressed by the development of new materials to replace the human donor cornea. These advancements, along with other improvements in the corneal transplantation procedure, have contributed to an improved success rate for corneal transplantation. We summarize recent developments and improvements in corneal transplantation, including the current understanding of angiogenesis mechanisms, the anti-angiogenic and anti-lymphangiogenic factors identified to date, and the new materials being used. Additionally, we discuss future directions for research in corneal transplantation.
Large spheroid deposits at Albion Island and Armenia in northern and central Belize and the spherule deposits of southern Belize and eastern Guatemala have the same glass origin based on the presence of almost pure Cheto smectite derived from alteration of impact glass from the Chicxulub impact on Yucatan, Mexico. The same origin has also been determined for altered glass spherules in Mexico, Haiti and the Caribbean. However, the spherule layers have variable ages as a result of erosion and redeposition, with an early Danian (
Parvularugoglobigerina eugubina
) zone Pla(1) age in southern Belize, Guatemala, Haiti, southern Mexico and the Caribbean, and a pre-K–T (
Plummerita hantkeninoides
) zone CF1 age of 65.27 ± 0.03 Ma in NE Mexico. A pre-K–T age for the Chicxulub impact has now also been determined from the new Yaxcopoil 1 core drilled in the impact crater. These data show that Chicxulub was not the K–T impact that caused the end-Cretaceous mass extinction, but an earlier impact event. A multiple impact hypothesis, volcanism and climate change appears the likely scenario for the end-Cretaceous mass extinction.
The Boston keratoprosthesis, based on early follow-up, is a good alternative as a primary penetrating corneal procedure in a select group of patients with very poor prognosis for penetrating keratoplasty. Although complications can occur and require close monitoring, visual acuity significantly improved in the majority of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.