Leishmaniasis is a disease caused by intracellular protozoan parasites of the genus Leishmania . In endemic areas, only a portion of exposed subjects develops cutaneous leishmaniasis (CL), suggesting that the genetic inheritance of the host plays a vital role in both resistance and susceptibility to the disease. Interleukin-2 (IL-2) is a cytokine that plays a central role in the regulation of the immune response in infection through the axis IL-2/IL-2R (receptor) complex, triggering a series of intracellular events, among which the signaling of Janus kinase/signal transducers and activators of transcription (JAK-STAT). The present study aimed at verifying the possible relationship between single nucleotide polymorphism (s) (SNP s) in the genes IL-2 , IL-2RB , and JAK3 in subjects with CL caused by Leishmania guyanensis in the city of Manaus, state of Amazonas, Brazil. 820 patients with CL and 850 healthy subjects (control group) coming from the same endemic areas as the patients were examined. The SNPs -2425G/A (rs4833248) and -330 T/G (rs2069762), located in the IL-2 gene promoter region, seem to influence the expression of the gene and the SNP +10558G/A (rs1003694) and +13295T/C (rs3212760) located in the 3rd intron of the IL-2RB gene and the 13th intron of the JAK3 gene, respectively, were studied by PCR-RFLP. Genotypes and alleles frequencies were obtained by direct counting. For the comparison between the two groups, the χ2 test with OR (odds ratio) and the 95% confidence interval (CI) were used. Similar genotypes and alleles frequencies for the different SNPs were observed in both patients with CL and healthy controls. Comparison of genotypic and allelic frequency between patients with CL and healthy subjects did not show any difference. These polymorphisms do not predict susceptibility to, or protection against the development of CL caused by L . guyanensis in the Amazonas.
Background: Leishmaniasis is an infectious disease caused by Leishmania parasites. A Th1 immune response is necessary in the acute phase to control the pathogen. The triggering receptor expressed on myeloid cells (TREM)-1 is a potent amplifier of inflammation. Our aim is to identify whether the TREM1 variant rs2234237 A/T (Thr25Ser) is associated with the disease development of cutaneous leishmaniasis (CL) in Leishmania guyanensis-infected individuals. The effects of the rs2234237 genotypes on plasma cytokines IL-1β, IL-6, IL-8, IL-10, MCP-1 and TNF-α are also investigated. Methods: 838 patients with CL and 818 healthy controls (HCs) living in the same endemic areas were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. Plasma cytokines were assayed in 400 patients with CL and 400 HCs using the BioPlex assay. Results: The genotypes’ and alleles’ frequencies were similar in both patients with CL (AA = 618, 74%; AT = 202, 24%; TT = 18, 2%) and in HCs (AA = 580, 71%; AT = 220, 27%; TT = 18, 2%). Rs2234237 showed a modest effect on plasma IL-10 that disappeared when correction of the p-value was applied. Plasma IL-10 by rs2234237 genotypes were (mean ± SEM; AA = 2.91 pg/mL ± 0.14; AT = 2.35 pg/mL ± 0.12; TT = 3.14 pg/mL ± 0.56; p = 0.05). Conclusion: The TREM1 rs2234237 (Thr25Ser) seems to have no influence on the susceptibility or resistance to L. guyanensis infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.