Abstract:Anthropogenic disturbance often results in the proliferation of native species of particular groups that leads to biotic homogenization. Leaf-cutting ants are an example of such winner organisms in tropical rain forests, but their response to disturbance in dry forests is poorly known. We investigated Atta colony density in areas of tropical dry forest in Brazil with different distance to roads and vegetation cover. Atta colonies were surveyed in 59 belt transects of 300 × 20 m, covering a total area of 35.4 ha. We found 224 Atta colonies, 131 of which were active and belonged to Atta opaciceps (87 colonies, 2.45 ha−1), A. sexdens (35 colonies, 0.98 ha−1) and A. laevigata (9 colonies, 0.25 ha−1). The density of active colonies sharply decreased from 15 ± 2.92 ha−1 in the 50-m zone along roads to only 2.55 ± 1.65 ha−1 at distances up to 300 m. The reverse pattern was observed for inactive colonies. Active Atta colonies preferentially occur in areas with low vegetation cover, while inactive colonies prefer areas with high vegetation cover. We demonstrate for the first time that anthropogenic disturbances promote the proliferation of leaf-cutting ants in dry forest in Brazil, which may affect plant regeneration via herbivory and ecosystem engineering as demonstrated for rain forests.
Anthropogenic disturbances are known to modify plant–animal interactions such as those involving the leaf‐cutting ants, the most voracious and proliferating herbivore across human‐modified landscapes in the Neotropics. Here, we evaluate the effect of chronic anthropogenic disturbance (e.g., firewood collection, livestock grazing) and vegetation seasonality on foraging area, foliage availability in the foraging area, leaf consumption and herbivory rate of the leaf‐cutting ant Atta opaciceps in the semiarid Caatinga, a mosaic of dry forest and scrub vegetation in northeast Brazil. Contrary to our initial expectation, the foraging area was not affected by either disturbance intensity or the interaction between season and disturbance intensity. However, leaf consumption and herbivory rate were higher in more disturbed areas. We also found a strong effect of seasonality, with higher leaf consumption and herbivory rate in the dry season. Our results suggest that the foraging ecology of leaf‐cutting ants is modulated by human disturbance and seasonality as these two drivers affect the spectrum and the amount of resources available for these ants in the Caatinga. Despite the low productivity of Caatinga vegetation, the annual rates of biomass consumption by A. opaciceps are similar to those reported from other leaf‐cutting ants in rain forests and savannas. This is made possible by maintaining high foraging activity even in the peak of the dry season and taking benefit from any resource available, including low‐quality items. Such compensation highlights the adaptive capacity of LCA to persist or even proliferate in human‐modified landscapes from dry to rain forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.