Brazil is the world's largest producer of common bean. Knowledge of the genetic diversity and relatedness of accessions adapted to Brazilian conditions is of great importance for the conservation of germplasm and for directing breeding programs aimed at the development of new cultivars. In this context, the objective of this study was to analyze the genetic diversity, population structure, and linkage disequilibrium (LD) of a diversity panel consisting of 219 common bean accessions, most of which belonging to the Mesoamerican gene pool. Genotyping by sequencing (GBS) of these accessions allowed the identification of 49,817 SNPs with minor allele frequency > 0.05. Of these, 17,149 and 12,876 were exclusive to the Mesoamerican and Andean pools, respectively, and 11,805 SNPs could differentiate the two gene pools. Further the separation according to the gene pool, bayesian analysis of the population structure showed a subdivision of the Mesoamerican accessions based on the origin and color of the seed tegument. LD analysis revealed the occurrence of long linkage blocks and low LD decay with physical distance between SNPs (LD half decay in 249 kb, corrected for population structure and relatedness). The GBS technique could effectively characterize the Brazilian common bean germplasms, and the diversity panel used in this study may be of great use in future genome-wide association studies.
Common bean (Phaseolus vulgaris L.) is one of the most important legumes for human consumption and is a staple food in the diet of the population of some countries of Latin America, Africa and Asia. The distinction between cultivars is based predominantly on morphological descriptors, which proved inefficient for the differentiation of some cultivars. This study had the objective of describing, distinguishing and evaluating the agronomic potential of 39 common bean cultivars of the carioca and black grain groups registered for cultivation in Brazil, based on 49 morphoagronomic descriptors and microsatellite (simple sequence repeat -SSR) markers. The morphoagronomic traits of each commercial group were characterized in four environments. Thirty-seven SSR markers were used for the molecular description. The morphological data, analyzed by the Shanonon-Weaver index, detected low variability among cultivars for qualitative data. On the other hand, the estimates of variance analysis, relative importance of the traits and hierarchical grouping analysis applied to the quantitative variables showed that the descriptors related to plant morphology were the most important for the carioca group, and those related to seed morphology were determining for the black group. The genetic parameters estimated for SSR markers by hierarchical and Bayesian cluster analysis identified 116 alleles, with 33 and 30 polymorphic loci and 24 and 22 private alleles for the carioca and black groups, respectively. The combined use of morphoagronomic and molecular descriptors improves the distinguishability of cultivars, contributing in a more efficient way to breeding and to the protection of cultivars.
Bioforti cation is one of the strategies developed to address malnutrition in developing countries, the aim of which is to improve the nutritional content of crops. The common bean (Phaseolus vulgaris L.), a staple food in several African and Latin American countries, has excellent nutritional attributes and is considered a strong candidate for bioforti cation. The objective of this study was to identify genomic regions associated with nutritional content in common bean grains using 178 Mesoamerican accessions belonging to a Brazilian Diversity Panel (BDP) and 25,011 good-quality single-nucleotide polymorphisms. The BDP was phenotyped in three environments for nine nutrients (phosphorus, potassium, calcium, magnesium, copper, manganese, sulfur, zinc, and iron) using four genome-wide association multi-locus methods. To obtain more accurate results, only Quantitative-Trait Nucleotides (QTNs) that showed repeatability (i.e., those detected at least twice using different methods or environments) were considered. Forty-eight QTNs detected for the nine minerals showed repeatability and were considered reliable. Pleiotropic QTNs and overlapping genomic regions surrounding the QTNs were identi ed, demonstrating the possible association between the deposition mechanisms of different nutrients in grains. The accumulation of favorable alleles in the same accession was associated with a gradually increasing nutrient content in the grain. The BDP proved to be a valuable source for association studies. The investigation of different methods and environments showed the reliability of markers associated with minerals. The loci identi ed in this study will potentially contribute to the improvement of Mesoamerican common beans, particularly carioca and black beans, the main groups consumed in Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.