Photonics technology has become a promising and viable alternative for both on-chip and off-chip interconnection networks of future Exascale systems. Nevertheless, this technology is not mature enough yet in this context, so research efforts focusing on photonic networks are still required to achieve realistic suitable network implementations. In this regard, system-level photonic network simulators can help guide designers to assess the multiple design choices. Most current research is done on electrical network simulators, whose components work widely different from photonics components. In this work, we summarize and compare the working behavior of both technologies which includes the use of optical routers, wavelength-division multiplexing and circuit switching among others. After implementing them into a well-known simulation framework, an extensive simulation study has been carried out using realistic photonic network configurations with synthetic and realistic traffic. Experimental results show that, compared to electrical networks, optical networks can reduce the execution time of the studied real workloads in almost one order of magnitude. Our study also reveals that the photonic configuration highly impacts on the network performance, being the bandwidth per channel and the message length the most important parameters. KEYWORDS interconnection networks, photonic technology, simulation framework 1 INTRODUCTION The most powerful supercomputers in the world 1 are ranked by their computational power in terms of floating-point operations executed per second (FLOPS). The Sunway TaihuLight, the recent supercomputer leading the list at November 2017, realizes by 93 PetaFlops (10 15 ) with 10.5 million cores. The Top500 list tracks the computational power of supercomputers since 1971, and according to the current growing compu-tational trend, it is expected that supercomputers will break the ExaFlop (10 18 ) barrier by 2020. Reaching this target, however, is challenging and requires from multiple simultaneous solutions addressing, among others, computation at chip level (nodes of the system), data movement across the system, distributed storage, energy management, etc.From the aforementioned challenges, the data movement challenge is probably the most critical to be achieved, mainly due to the increasing number of computing nodes, and therefore, the increasing communication requirements. Exascale networks will count with thousands of computing nodes, so data transmission among them becomes a major design concern, and new requirements rise not only in terms of throughput but also in energy demands. In such systems, the underlying network technology 2,3 is a critical design choice, and this is the focus of the European ExaNeSt, project which is currently being developed (see Section 2.1 for more details).In this regard, photonics interconnects, both on-chip and off-chip, have emerged as a worth alternative technology addressing the key constraints of traditional electrical networks. This technology provides much m...
Photonics technology has become a promising and viable alternative for both on-chip and off-chip computer networks of future Exascale systems. Nevertheless, this technology is not mature enough yet in this context, so research efforts focusing on photonic networks are still required to achieve realistic suitable network implementations. In this context, system-level photonic network simulators can help to guide designers to assess the multiple design choices. Most current research is done on electrical network simulators, whose components work widely different from photonics components. Moreover, photonics technology adds new components that are not present in electrical networks. This paper discusses how a photonics simulation tool can be built by extending an electrical simulation framework. We summarize and compare the working behavior of both technologies-electrical and photonics-, and discuss the rationale behind the proposed extensions. Among others, the devised extensions model optical routers, wavelength-division multiplexing, circuit switching, and specific routing algorithms. This work is aimed to provide support to investigate offchip optical networks in the context of the European Exascale System Interconnect and Storage project (ExaNeSt) project. The experiments presented in this paper study multiple realistic photonic networks configurations and have been performed with excerpts of real traces. Experimental results show that, compared to electrical networks, optical networks can reduce the execution time of the workload by several orders of magnitude. Our study reveals that future optical technologies presenting a 3.2 Tbps aggregate link bandwidth will not provide additional performance benefits over state-of-the-art 1.6 Tbps optical links across the studied workloads, but 1.6 Tbps network links are enough to achieve the highest optical performance on computer networks. Regarding the link configuration, the bandwidth per optical channel is the parameter with highest impact on the network delay and so on the execution time, while for a given optical bandwidth per channel the better strategy is to reduce the phit size.
Real-time tasks have experience a significant complexity increase in the last years. We can find examples of realtime tasks in nowadays systems that control self-driving cars or multimedia systems, among others. To cope with the high performance requirements of such systems, real-time systems are moving from simple in-order processor to complex out-of-order multicore processors. Furthermore, we expect real-time systems to use simultaneous multithreading (SMT) processors in a near future since these architectures address two key design concerns of embedded systems, that is, they provide higher performance and power efficiency than single-threaded multicores. The main drawback that multicores and SMT architectures present from a real-time perspective is that they implement shared resources. Single-threaded multicores usually share the main memory and the LLC, and SMT processor share additionally most of the microarchitectural core resources. Processes running concurrently can interfere in the shared resources, which increases the performance variability and predictability of these systems. We expect an increasing effort in the next years to mitigate these drawbacks and implement real-time systems with multicore SMT processors. Workload generation is a tedious and time-consuming task in the real-time research field because the workloads dispose of many parameters that should be correctly adjusted to provide flexible and representative workloads. Typically used workload generators, however, fail when designing workloads for theses architectures because they are not aware of the architectural characteristics of SMT systems. In this paper we present the task class-based (TCB) workload generator aimed at providing workloads to evaluate real-time systems with SMT multicore processors in an ease and automatized way.
Photonics are becoming realistic technologies for implementing interconnection networks in near future Exascale supercomputer systems. Photonics present key features to design high-performance and scalable supercomputer networks, such as higher bandwidth and lower latencies than their electronic supercomputer networks counterparts. Some research work is focused on conventional network topologies built with photonic technologies, with the aim of taking advantage of photonic characteristics. Nevertheless, these approaches fail in that they keep low the network utilization. We looked into this downside and we found that circuit switching was the main performance limitation. In this paper we propose a new switching mechanism, called Segment Switching, to address this constraint and improve the network utilization. Segment Switching splits the circuit in segments of the whole path, and uses buffering on selected nodes on the network. Experimental results show that the devised approach significantly outperforms photonic circuit switching in conventional torus and fat tree networks by 70% and 90%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.