The development of a functioning neural network relies on responses of axonal growth cones to molecular guidance cues that are encountered en route to their target tissue. Nerve growth factor (NGF) and neurotrophin-3 serve as attractive cues for chick embryo sensory growth cones in vitro and in vivo, but little is known about the actin-binding proteins necessary to mediate this response. The evolutionarily conserved ezrin/radixin/moesin (ERM) family proteins can tether actin filaments to the cell membrane when phosphorylated at a conserved threonine residue. Here we show that acute neurotrophin stimulation rapidly increases active phospho-ERM levels in chick sensory neuron growth cone filopodia, coincident with an increase in filopodial L1 and β-integrin. Disrupting ERM function with a dominant-negative construct (DN-ERM) results in smaller and less motile growth cones with disorganized actin filaments. Previously, we found that nerve growth factor (NGF) treatment increases ADF/cofilin activity and growth cone F-actin (Marsick et al., 2010). Here, we show this F-actin increase, as well as attractive turning to NGF, is blocked when ERM function is disrupted, despite normal activation of ADF/cofilin. We further show that DN-ERM expression disrupts leading edge localization of active ADF/cofilin and free F-actin barbed ends. Moreover, filopodial phospho-ERM levels are increased by incorporation of active ADF/cofilin, and reduced by knockdown of L1CAM. Taken together, these data suggest that ERM proteins organize actin filaments in sensory neuron growth cones and are crucial for neurotrophin-induced remodeling of F-actin and re-distribution of adhesion receptors.
During development extrinsic guidance cues modulate the peripheral actin network in growth cones to direct axons to their targets. We wanted to understand the role of the actin nucleator Arp2/3 in growth cone actin dynamics and guidance. Since growth cones migrate in association with diverse adhesive substrates during development, we probed the hypothesis that the functional significance of Arp2/3 is substrate dependent. We report that Arp2/3 inhibition led to a reduction in the number of filopodia and growth cone F-actin content on laminin and L1. However, we found substrate-dependent differences in growth cone motility, actin retrograde flow, and guidance after Arp2/3 inhibition, suggesting that its role, and perhaps that of other actin binding proteins, in growth cone motility is substrate dependent.
BACKGROUND AND OBJECTIVES: The prone transpsoas (PTP) approach for lateral lumbar interbody fusion (LLIF) is a novel technique for degenerative lumbar spine disease. However, there is a paucity of information in the literature on the complications of this procedure, with all published data consisting of small samples. We aimed to report the intraoperative and postoperative complications of PTP in the largest study to date. METHODS: A retrospective electronic medical record review was conducted at 11 centers to identify consecutive patients who underwent LLIF through the PTP approach between January 1, 2021, and December 31, 2021. The following data were collected: intraoperative characteristics (operative time, estimated blood loss [EBL], intraoperative complications [anterior longitudinal ligament (ALL) rupture, cage subsidence, vascular and visceral injuries]), postoperative complications, and hospital stay. RESULTS: A total of 365 patients were included in the study. Among these patients, 2.2% had ALL rupture, 0.3% had cage subsidence, 0.3% had a vascular injury, 0.3% had a ureteric injury, and no other visceral injuries were reported. Mean operative time was 226.2 ± 147.9 minutes. Mean EBL was 138.4 ± 215.6 mL. Mean hospital stay was 2.7 ± 2.2 days. Postoperative complications included new sensory symptoms—8.2%, new lower extremity weakness—5.8%, wound infection—1.4%, cage subsidence—0.8%, psoas hematoma—0.5%, small bowel obstruction and ischemia—0.3%, and 90-day readmission—1.9%. CONCLUSION: In this multicenter case series, the PTP approach was well tolerated and associated with a satisfactory safety profile.
OBJECTIVE Pelvic fixation with S2-alar-iliac (S2AI) screws is an established technique in adult deformity surgery. The authors’ objective was to report the incidence and risk factors for an underreported acute failure mechanism of S2AI screws. METHODS The authors retrospectively reviewed a consecutive series of ambulatory adults with fusions extending 3 or more levels, and which included S2AI screws. Acute failure of S2AI screws was defined as occurring within 6 months of the index surgery and requiring surgical revision. RESULTS Failure occurred in 6 of 125 patients (5%) and consisted of either slippage of the rods or displacement of the set screws from the S2AI tulip head, with resultant kyphotic fracture. All failures occurred within 6 weeks postoperatively. Revision with a minimum of 4 rods connecting to 4 pelvic fixation points was successful. Two of 3 (66%) patients whose revision had less fixation sustained a second failure. Patients who experienced failure were younger (56.5 years vs 65 years, p = 0.03). The magnitude of surgical correction was higher in the failure cohort (number of levels fused, change in lumbar lordosis, change in T1–pelvic angle, and change in coronal C7 vertical axis, each p < 0.05). In the multivariate analysis, younger patient age and change in lumbar lordosis were independently associated with increased failure risk (p < 0.05 for each). There was a trend toward the presence of a transitional S1–2 disc being a risk factor (OR 8.8, 95% CI 0.93–82.6). Failure incidence was the same across implant manufacturers (p = 0.3). CONCLUSIONS All failures involved large-magnitude correction and resulted from stresses that exceeded the failure loads of the set plugs in the S2AI tulip, with resultant rod displacement and kyphotic fractures. Patients with large corrections may benefit from 4 total S2AI screws at the time of the index surgery, particularly if a transitional segment is present. Salvage with a minimum of 4 rods and 4 pelvic fixation points can be successful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.