SUMMARYThe tegus increase in body mass after hatching until early autumn, when the energy intake becomes gradually reduced. Resting rates of oxygen consumption in winter drop to 20% of the values in the active season(V̇O2=0.0636 ml g-1 h-1) and are nearly temperature insensitive over the range of 17-25°C (Q10=1.55). During dormancy, plasma glucose levels are 60% lower than those in active animals, while total protein, total lipids and β-hydroxybutyrate are elevated by 24%, 43% and 113%,respectively. In addition, a significant depletion of liver carbohydrate (50%)and of fat deposited in the visceral fat bodies (24%) and in the tail (25%)and a slight loss of skeletal muscle protein (14%) were measured halfway through the inactive period. Otherwise, glycogen content is increased 4-fold in the brain and 2.3-fold in the heart of dormant lizards, declining by the onset of arousal. During early arousal, the young tegus are still anorexic,although V̇O2 is significantly greater than winter rates. The fat deposits analysed are further reduced (62% and 45%, respectively) and there is a large decrease in tail muscle protein (50%) together with a significant increase in glycogen(2-3-fold) and an increase in plasma glucose (40%), which suggests a role for gluconeogenesis as a supplementary energy source in arousing animals. No change is detectable in citrate synthase activity, but β-hydroxyacyl CoA dehydrogenase activities are strongly affected by season, reaching a 3-fold and 5-fold increase in the liver tissue of winter and arousing animals,respectively, and becoming reduced by half in skeletal muscle and heart of winter animals compared with late fall or spring active individuals. From hatching to late autumn, the increase of the fat body mass relatively to body mass is disproportionate (b=1.44), and the mass exponent changes significantly to close to 1.0 during the fasting period. The concomitant shift in the V̇O2 mass exponent in early autumn (b=0.75) to values significantly greater than 1.0 in late autumn and during winter dormancy indicates an allometric effect on the degree of metabolic depression related to the size of the fat stores and suggests greater energy conservation in the smaller young.
SUMMARY
Amphisbaenians are legless reptiles that differ significantly from other vertebrate lineages. Most species dig underground galleries of similar diameter to that of the animal. We studied the muscle physiology and morphological attributes of digging effort in the Brazilian amphisbaenid Leposternon microcephalum (Squamata; Amphisbaenia), which burrows by compressing soil against the upper wall of the tunnel by means of upward strokes of the head. The individuals tested (<72 g) exerted forces on the soil of up to 24 N. These forces were possible because the fibres of the longissimus dorsi, the main muscle associated with burrowing, are highly pennated, thus increasing effective muscle cross-sectional area. The muscle is characterized by a metabolic transition along its length: proximal, medial and distal fibres are fast contracting and moderately oxidative, but fibres closer to the head are richer in citrate synthase and more aerobic in nature. Distal fibres, then, might be active mainly at the final step of the compression stroke, which requires more power. For animals greater than a given diameter,the work required to compress soil increases exponentially with body diameter. Leposternon microcephalum, and probably some other highly specialized amphisbaenids, are most likely constrained to small diameters and can increase muscle mass and effective muscle cross-sectional area by increasing body length, not body diameter.
remarkable differences in jumping performance, while Tropidurus oreadicus, the more distantly related species, exhibited intermediate values. Tropidurus psamonastes, a species endemic to sand dunes, exhibited high absolute sprint speeds on sand, jumped rarely and possessed a high proportion of glycolytic fibers and low activity of citrate synthase. The sister-species Tropidurus itambere, endemic to rocky outcrops, performed a large number of jumps and achieved lower absolute sprint speed than T. psamonastes. This study provides evidence of rapid divergence of locomotor parameters between sister-species that use different substrates, which is only partially explained by variation in physiological parameters of the iliofibularis muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.