Genetic control of female sex differentiation from a bipotential gonad in mammals is poorly understood. We find that mouse XX gonads lacking the forkhead transcription factor Foxl2 form meiotic prophase oocytes, but then activate the genetic program for somatic testis determination. Pivotal Foxl2 action thus represses the male gene pathway at several stages of female gonadal differentiation. This suggests the possible continued involvement of sex-determining genes in maintaining ovarian function throughout female reproductive life.
Arhinia, or absence of the nose, is a rare malformation of unknown etiology that is often accompanied by ocular and reproductive defects. Sequencing of 40 people with arhinia revealed that 84% of probands harbor a missense mutation localized to a constrained region of SMCHD1 encompassing the ATPase domain. SMCHD1 mutations cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) via a trans-acting loss-of-function epigenetic mechanism. We discovered shared mutations and comparable DNA hypomethylation patterning between these distinct disorders. CRISPR/Cas9-mediated alteration of smchd1 in zebrafish yielded arhinia-relevant phenotypes. Transcriptome and protein analyses in arhinia probands and controls showed no differences in SMCHD1 mRNA or protein abundance but revealed regulatory changes in genes and pathways associated with craniofacial patterning. Mutations in SMCHD1 thus contribute to distinct phenotypic spectra, from craniofacial malformation and reproductive disorders to muscular dystrophy, which we speculate to be consistent with oligogenic mechanisms resulting in pleiotropic outcomes.
Background: Partial loss of function of the transcription factor FOXL2 leads to premature ovarian failure in women. In animal models, Foxl2 is required for maintenance, and possibly induction, of female sex determination independently of other critical genes, e.g., Rspo1. Here we report expression profiling of mouse ovaries that lack Foxl2 alone or in combination with Wnt4 or Kit/c-Kit.
Our study underscores the importance of genotyping large groups of patients from distinct ethnic origins for improving the estimation of the global involvement of particular MAC-causing genes.
Snyder-Robinson syndrome (SRS, OMIM 309583) is a rare X-linked syndrome characterized by mental retardation, marfanoid habitus, skeletal defects, osteoporosis and facial asymmetry. Linkage analysis localized the related gene to Xp21.3-p22.12, and a G-to-A transition at point +5 of intron 4 of the spermine synthase gene, which caused truncation of the SMS protein and loss of enzyme activity, was identified in the original family. Here we describe another family with Snyder-Robinson syndrome in two Mexican brothers and a novel mutation (c.496T>G) in the exon 5 of the SMS gene confirming its involvement in this rare X-linked mental retardation syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.