Supercontinuum (SC) generation based on ultrashort pulse compression constitutes one of the most promising technologies towards ultra-wide bandwidth, high-brightness, and spatially coherent light sources for applications such as spectroscopy and microscopy. Here, multi-octave SC generation in a gas-filled hollow-core antiresonant fiber (HC-ARF) is reported spanning from 200 nm in the deep ultraviolet (DUV) to 4000 nm in the mid-infrared (mid-IR) having an output energy of 5 μJ. This was obtained by pumping at the center wavelength of the first anti-resonant transmission window (2460 nm) with ~100 fs pulses and an injected pulse energy of ~8 μJ. The mechanism behind the extreme spectral broadening relies upon intense soliton-plasma nonlinear dynamics which leads to efficient soliton self-compression and phase-matched dispersive wave (DW) emission in the DUV region. The strongest DW is observed at 275 nm which corresponds to the calculated phase-matching wavelength of the pump. Furthermore, the effect of changing the pump pulse energy and gas pressure on the nonlinear dynamics and their direct impact on SC generation was investigated. This work represents another step towards gas-filled fiber-based coherent sources, which is set to have a major impact on applications spanning from DUV to mid-IR.
We present a randomly disordered silica-air optical fiber featuring a 28.5% air filling fraction in the structured region, and low attenuation below 1 dB per meter at visible wavelengths. The quality of images transported through this fiber is shown to be comparable to, or even better than, that of images sent through commercial multicore imaging fiber. We demonstrate robust high-quality optical image transfer through 90 cm-long fibers with disordered silica-air structure, more than an order of magnitude improvement compared to previous disordered fiber imaging distances. The effects of variations of wavelength and feature size on transported image quality are investigated experimentally.
Deep-UV (DUV) supercontinuum (SC) sources based on gas-filled hollow-core fibers constitute perhaps the most viable solution towards ultrafast, compact, and tunable lasers in the UV spectral region. Noise and spectral stability of such broadband sources are key parameters that define their true potential and suitability towards real-world applications. In order to investigate the spectral stability and noise levels in these fiber-based DUV sources, we generate an SC spectrum that extends from 180 nm (through phasematched dispersive waves -DWs) to 4 μm by pumping an argon-filled hollow-core anti-resonant fiber at a wavelength of 2.45 μm. We characterize the long-term stability of the source over several days and the pulse-to-pulse relative intensity (RIN) noise of the strongest DW at 275 nm. The results indicate no sign of spectral degradation over 110 hours, but the RIN of the DW pulses at 275 nm is found to be as high as 33.3%. Numerical simulations were carried out to investigate the spectral distribution of the RIN and the results confirm the experimental measurements and that the poor noise performance is due to the RIN of the pump laser, which was hitherto not considered in numerical modelling of these sources. The results presented herein provide an important step towards an understanding of the noise mechanism underlying such complex light-gas nonlinear interactions and demonstrate the need for pump laser stabilization. ABSTRACTThis document provides supplementary information to "Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources". Here we provide the details of the phase-matching conditions between the soliton and dispersive waves, and compared our expression to other expressions mentioned in the manuscript. Additionally, we provide he figures for filtered DUV used for the RIN measurements as well as the histograms of the RINs for the pump laser, Ti:sapphire, and DUV at 360 nm and 280 nm. We further compared the coherence and RINs when the pump laser noise is not considered and when considered.
Optical vortex beams that carry orbital angular momentum (OAM), also known as OAM modes, have attracted considerable interest in recent years as they can comprise an additional degree of freedom for a variety of advanced classical and quantum optical applications. While canonical methods of OAM mode generation are effective, a method that can simultaneously generate and multiplex OAM modes with low loss and over broad spectral range is still in great demand. Here, via novel design of an optical fiber device referred to as a photonic lantern, where the radial mode index ("m") is neglected, for the first time we demonstrate the simultaneous generation and multiplexing of OAM modes with low loss and over the broadest spectral range to date (550 nm). We further confirm the potential of this approach to preserve the quality of studied OAM modes by fusion splicing the end-facet of the fabricated device to a delivery ring-core fiber (RCF).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.