In this paper, we present a low-cost, stand-alone sensory platform developed for in situ monitoring of environmental parameters, for use in the Amazon region in the north of Brazil. The mission of the platform is to perform monitoring and identification of overirradiance (solar irradiance > 1000 W/m2) and extreme overirradiance events (solar irradiance > 1300 W/m2) using a photovoltaic based irradiance sensor. The sensory platform was built using the ESP8266 microcontroller, an open embedded computer capable of Wi-Fi communication using the IEEE 802.11 standard, and small photovoltaic modules, air temperature, atmospheric pressure, voltage, and current sensors, enabling the development of a low-cost system (€70/R$350.00 BRL). Calibration and tests were conducted at the Federal University of Pará (UFPA), Belém campus, Pará, where the platform measured an extreme overirradiance of 1321 W/m2 at a low-latitude (1 °S) and low altitude (7 m above sea level).
This paper presents the development of a prototype of a system for remote data acquisition of environmental variables in the Amazon Forest called GETFOREST. The system performs all the functions of a Datalogger and has the task of analyzing behavior in a forest reserve by an intelligent agent, which contains expert systems of the patterns related to environmental variables of temperature, relative humidity and dew point. The sensor hardware is composed by a computational embedded unit that contains an analog/digital data acquisition in wireless communication interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.