The National Ignition Facility (NIF) is the world's largest optical instrument, comprising 192 37 cm square beams, each generating up to 9.6 kJ of 351 nm laser light in a 20 ns beam precisely tailored in time and spectrum. The Facility houses a massive (10 m diameter) target chamber within which the beams converge onto an ∼1 cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5 m×2 m×1 m) line-replaceable optics assemblies to within ±1 mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10 min and alignment to target chamber center within 44 min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50 μm rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams.
Due to pathologies or age-related problems, in some disabled people, motor impairment is associated with cognitive and/or visual impairments. This combination of limitations unfortunately leads to an inability to move around independently. Indeed, their situation does not allow them to use a conventional electric wheelchair, for safety reasons, and for the moment there is no other technological solution providing safe movement capacity. This lack of access to an autonomous travel solution has the consequence of weakening the intellectual, personal, social, cultural and moral development, as well as the life expectancy, of the people concerned. In this context, our team is working on the development of an optoelectronic system that secures the displacement of electric wheelchairs. This is a large project that requires the development of several functionalities such as: the anti-collision of the wheelchair with its environment, the prevention of falls from the wheelchair on uneven levels, and the adaptation of the system mechanically and electronically to the majority of commercially available electric wheelchair models, among others. In this article, we introduce our solution for detecting dangerous height differences, also called “negative obstacles”, through the creation of a dedicated sensor. This sensor works by optical triangulation and can embed several laser beams in order to extend its detection zone. It has the particularity of being robust in direct sunlight and rain and has a sufficiently high measurement rate to be suitable for the displacement of electric wheelchairs. We develop an adapted algorithm, and point out compromises, in particular between the orientation of the laser beams and the maximal speed of the wheelchair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.