Current research on the influence of environmental and physicochemical factors in shaping the soil bacterial structure has seldom been approached from a pedological perspective. We studied the bacterial communities of eight soils selected along a pedogenic gradient at the local scale in a Mediterranean calcareous mountain (Sierra de María, SE Spain). The results showed that the relative abundance of Acidobacteria, Canditate division WPS-1, and Armatimonadetes decreased whereas that of Actinobacteria, Bacteroidetes, and Proteobacteria increased from the less-developed soils (Leptosol) to more-developed soils (Luvisol). This bacterial distribution pattern was also positively correlated with soil-quality parameters such as organic C, water-stable aggregates, porosity, moisture, and acidity. In addition, at a lower taxonomic level, the abundance of Acidobacteria Gp4, Armatimonadetes_gp4, Solirubrobacter, Microvirga, Terrimonas, and Nocardioides paralleled soil development and quality. Therefore, our work indicates that the composition of bacterial populations changes with pedogenesis, which could be considered a factor influencing the communities according to the environmental and physicochemical conditions during the soil formation.
The nature reserve of Tehuacan-Cuicatlan in central Mexico is known for its diversity and endemism mainly in cactus plants. Although the xerophytic flora is reasonably documented, the bacterial communities associated with these species have been largely neglected. We assessed the diversity and composition of bacterial communities in bulk (non-rhizospheric) soil and the rhizosphere of three cactus plant species: Mammillaria carnea, Opuntia pilifera and Stenocereus stellatus, approached using cultivation and molecular techniques, considering the possible effect of dry and rainy seasons. Cultivation-dependent methods were focused on putative N(2)-fixers and heterotrophic aerobic bacteria, in the two media tested the values obtained for dry season samples grouped together regardless of the sample type (rhizospheric or non-rhizospheric), these groups also included the non-rhizospheric sample for rainy season, on each medium. These CFU values were smaller and significantly different from those obtained on rhizospheric samples from rainy season. Genera composition among isolates of the rhizospheric samples was very similar for each season, the most abundant taxa being α-Proteobacteria, Actinobacteria and Firmicutes. Interestingly, the genus Ochrobactrum was highly represented among rhizospheric samples, when cultured in N-free medium. The structure of the bacterial communities was approached with molecular techniques targeting partial 16S rRNA sequences such as denaturing gradient gel electrophoresis and serial analysis of ribosomal sequence tags. Under these approaches, the most represented bacterial phyla were Actinobacteria, Proteobacteria and Acidobacteria. The first two were also highly represented when using isolation techniques.
Isabel Lake is a moderate saline soda crater lake located in Isabel Island in the eastern tropical Pacific coast of Mexico. Lake is mainly formed by rainfall and is strongly affected by evaporation and high input of nutrients derived from excretions of a large bird community inhabiting the island. So far, only the island macrobiota has been studied. The knowledge of the prokaryotic biota inhabiting the upper layers of this meromictic lake can give clues for the maintenance of this ecosystem. We assessed the diversity and composition of prokaryotic community in sediments and water of the lake by DGGE profiling, 16S rRNA gene amplicon pyrosequencing, and cultivation techniques. The bacterial community is largely dominated by halophilic and halotolerant microorganisms. Alpha diversity estimations reveal higher value in sediments than in water (P > 0.005). The lake water is dominated by γ-Proteobacteria belonging to four main families where Halomonadaceae presents the highest abundance. Aerobic, phototrophic, and halotolerant prokaryotes such as Cyanobacteria GPIIa, Halomonas, Alcanivorax, Idiomarina, and Cyclobacterium genera are commonly found. However, in sediment samples, Formosa, Muricauda, and Salegentibacter genera corresponding to Flavobacteriaceae family accounted for 15-20 % of the diversity. Heterotrophs like those involved in sulfur cycle, Desulfotignum, Desulfuromonas, Desulfofustis, and Desulfopila, appear to play an important role in sediments. Finally, a collection of aerobic halophilic bacterial isolates was created from these samples; members of the genus Halomonas were predominantly isolated from lake water. This study contributes to state the bacterial diversity present in this particular soda saline crater lake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.