Background: In preeclampsia, a hypertensive disorder of pregnancy, the poor remodeling of spiral arteries leads to placental hypoperfusion and ischemia, provoking generalized maternal endothelial dysfunction and, in severe cases, death. Endothelial and placental remodeling is important for correct pregnancy evolution and is mediated by cytokines and growth factors such as fibroblast growth factor type 2 (FGF2). In this study, we evaluated the effect of human recombinant FGF2 (rhFGF2) administration in a murine model of PE induced by NG-nitro-L-arginine methyl ester (L-NAME) to test if rhFGF2 administration can lessen the clinical manifestations of PE.Methods: Pregnant rats were administrated with 0.9% of NaCl (vehicle), L-NAME (60 mg/kg), FGF2 (666.6 ng/kg), L-NAME+FGF2 or L-NAME + hydralazine (10 mg/kg) from the 10th to 19th days of gestation. Blood pressure (BP), urine protein concentrations and anthropometric values both rat and fetuses were assessed. Histological evaluation of organs from rats delivered by cesarean section was carried out using hematoxylin and eosin staining.Results: A PE-like model was established, and it included phenotypes such as maternal hypertension, proteinuria, and fetal growth delay. Compared to the groups treated with L-NAME, the L-NAME + FGF2 group was similar to vehicle: the BP remained stable and the rats did not develop enhanced proteinuria. Both the fetuses and placentas from rats treated with L-NAME + FGF2 had similar values of weight and size compared with the vehicle.Conclusion: The intravenous administration of rhFGF2 showed beneficial and hypotensive effects, reducing the clinical manifestations of PE in the evaluated model.
The abnormal implantation of the trophoblast during the first trimester of pregnancy precedes the appearance of the clinical manifestations of preeclampsia (PE), which is a hypertensive disorder of pregnancy. In a previous study, which was carried out in a murine model of PE that was induced by NG-nitro-L-arginine methyl ester (L-NAME), we observed that the intravenous administration of fibroblast growth factor 2 (FGF2) had a hypotensive effect, improved the placental weight gain and attenuated the fetal growth restriction, and the morphological findings that were induced by L-NAME in the evaluated tissues were less severe. In this study, we aimed to determine the effect of FGF2 administration on the placental gene expression of the vascular endothelial growth factor (VEGFA), VEGF receptor 2 (VEGFR2), placental growth factor, endoglin (ENG), superoxide dismutase 1 (SOD1), catalase (CAT), thioredoxin (TXN), tumor protein P53 (P53), BCL2 apoptosis regulator, Fas cell surface death receptor (FAS), and caspase 3, in a Sprague Dawley rat PE model, which was induced by L-NAME. The gene expression was determined by a real-time polymerase chain reaction using SYBR green. Taking the vehicle or the L-NAME group as a reference, there was an under expression of placental VEGFA, VEGFR2, ENG, P53, FAS, SOD1, CAT, and TXN genes in the group of L-NAME + FGF2 (p < 0.05). The administration of FGF2 in the murine PE-like model that was induced by L-NAME reduced the effects that were generated by proteinuria and the increased BP, as well as the response of the expression of genes that participate in angiogenesis, apoptosis, and OS. These results have generated valuable information regarding the identification of molecular targets for PE and provide new insights for understanding PE pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.