There are many representations of planar graphs, but few are as elegant as Turán's (1984): it is simple and practical, uses only 4 bits per edge, can handle self-loops and multi-edges, and can store any specified embedding. Its main disadvantage has been that "it does not allow efficient searching" (Jacobson, 1989). In this paper we show how to add a sublinear number of bits to Turán's representation such that it supports fast navigation while retaining simplicity. As a consequence of the inherited simplicity, we offer the first efficient parallel construction of a compact encoding of a planar graph embedding. Our experimental results show that the resulting representation uses about 6 bits per edge in practice, supports basic navigation operations within a few microseconds, and can be built sequentially at a rate below 1 microsecond per edge, featuring a linear speedup with a parallel efficiency around 50% for large datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.