Background and Purpose:Aberrrant course of the cervical internal carotid arteries (ICAs) may result in submucosal masses in the posterior pharyngeal wall, may cause confusion at physical examination, may be symptomatic, and can be at risk of surgical injury. The aim of this report is to present the clinical and imaging characteristics associated with aberrant course of the cervical portion of the ICAs.Methods:Imaging studies of 5.500 patients were prospectively selected from CT studies of the head and neck performed in a five years period, in which the course of the one or both ICAs at the level of the hypopharynx and oropharynx was assessed as aberrant by means of a proposed classification. We then reviewed the medical records to establish which symptoms were present and if these symptoms could be caused by these variations in the course of the ICAs. In selected cases, further studies including magnetic resonance (MR) imaging, MR angiography (MRA), or selective catheter angiography were obtained. Results:In our restricted classification, we found 14 (0.2%) patients who met the cervical ICA aberrancy criteria. In all patients contrast enhanced CT or CT angiography was performed, 4 also have had MRI and MRA, and in two additional catheter angiograms were performed. Mean age was 62 years. Eight patients were male and seven were female. Four patients (28%) were considered to have clinical symptoms related to aberrant course of the ICAs. In most of the symptomatic patients both ICAs had aberrant courses. Overall, the course of the right ICA was aberrant in 43%, the left ICA in 14%, and both in 43%. In 50% of the cases the aberrancy of the artery was focal (localized to the oropharynx or laryngopharynx) and in the other 50% it involved the entire cervical course of the ICA.Conclusions:In most of our patients variations in the course of the cervical portion of the ICA involved the right side and were asymptomatic, except with regard to potential surgical risks. However, in about 25% of our patients these variations were thought to be the culprit of patient complaints, particularly oropharyngeal pulsatile sensation. Furthermore, extreme degrees of medialization of the ICAs resulted in progressive symptoms including hoarseness and upper respiratory distress.
Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment.
SUMMARYAn essential part of sexual reproduction typically involves the identification of an appropriate mating partner. Males of many moth species utilize the scent of sex pheromones to track and locate conspecific females. However, before males engage in flight, warm-up by shivering of the major flight muscles is necessary to reach a thoracic temperature suitable to sustain flight. Here we show that Helicoverpa zea males exposed to an attractive pheromone blend (and in some instances to the primary pheromone component alone) started shivering earlier and took off at a lower thoracic temperature than moths subjected to other incomplete or unattractive blends. This resulted in less time spent shivering and faster heating rates. Two interesting results emerge from these experiments. First, the rate of heat generation can be modulated by different olfactory cues. Second, males detecting the pheromone blend take off at lower thoracic temperatures than males exposed to other stimuli. The take-off temperature of these males was below that for optimal power production in the flight muscles, thus generating a trade-off between rapid departure and suboptimal flight performance. Our results shed light on thermoregulatory behaviour of unrestrained moths associated with the scramble competition for access to females and suggest ecological trade-offs between rapid flight initiation and sub-optimal flight performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.