In 1993 and 1996, subtype IE Venezuelan equine encephalitis (VEE) virus caused epizootics in the Mexican states of Chiapas and Oaxaca. Previously, only subtype IAB and IC VEE virus strains had been associated with major outbreaks of equine and human disease. The IAB and IC epizootics are believed to emerge via adaptation of enzootic (sylvatic, equine-avirulent) strains for high titer equine viremia that results in efficient infection of mosquito vectors. However, experimental equine infections with subtype IE equine isolates from the Mexican outbreaks demonstrated neurovirulence but little viremia, inconsistent with typical VEE emergence mechanisms. Therefore, we hypothesized that changes in the mosquito vector host range might have contributed to the Mexican emergence. To test this hypothesis, we evaluated the susceptibility of the most abundant mosquito in the deforested Pacific coastal locations of the VEE outbreaks and a proven epizootic vector, Ochlerotatus taeniorhynchus. The Mexican epizootic equine isolates exhibited significantly greater infectivity compared with closely related enzootic strains, supporting the hypothesis that adaptation to an efficient epizootic vector contributed to disease emergence. Reverse genetic studies implicated a Ser 3 Asn substitution in the E2 envelope glycoprotein as the major determinant of the increased vector infectivity phenotype. Our findings underscore the capacity of RNA viruses to alter their vector host range through minor genetic changes, resulting in the potential for disease emergence.
Venezuelan equine encephalitis (VEE) is an emerging infectious disease in Latin America. Outbreaks have been recorded for decades in countries with enzootic circulation, and the recent implementation of surveillance systems has allowed the detection of additional human cases in countries and areas with previously unknown VEE activity. Clinically, VEE is indistinguishable from dengue and other arboviral diseases and confirmatory diagnosis requires the use of specialized laboratory tests that are difficult to afford in resource-limited regions. Thus, the disease burden of endemic VEE in developing countries remains largely unknown, but recent surveillance suggests that it may represent up to 10% of the dengue burden in neotropical cities, or tens-of-thousands of cases per year throughout Latin America. The potential emergence of epizootic viruses from enzootic progenitors further highlights the need to strengthen surveillance activities, identify mosquito vectors and reservoirs and develop effective strategies to control the disease. In this article, we provide an overview of the current status of endemic VEE that results from spillover of the enzootic cycles, and we discuss public health measures for disease control as well as future avenues for VEE research.
West Nile virus (WNV) antibodies were detected in horses from five Mexican states, and WNV was isolated from a Common Raven in the state of Tabasco. Phylogenetic studies indicate that this isolate, the first from Mexico, is related to strains from the central United States but has a relatively high degree of sequence divergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.