Immunohistochemical methods were used to characterize the expression of two calcium-binding proteins, calretinin (CR) and S100, in the olfactory rosette of the adult zebrafish. These proteins are expressed in different sets of sensory neurons, and together represent a large proportion of these cells. Double immunofluorescence for CR and Gα(olf) protein, and CR immunoelectron microscopy, indicated that most CR-immunoreactive (ir) cells were ciliary neurons. Differential S100- and CR-ir projections to glomerular fields of the olfactory bulb were also observed, although these projections overlap in some glomeruli. Application of the carbocyanine dye DiI to either S100-ir or CR-ir glomerular regions led to labeling of cells mostly similar to S100-ir and CR-ir neurons, respectively. Instead, these bulbar regions project to similar telencephalic targets. On the other hand, antibodies against keyhole limpet hemocyanin (KLH)-stained numerous sensory cells in the olfactory rosette, including cells that were CR- and S100-negative. This antiserum also stained most primary bulbar projections and revealed extrabulbar olfactory primary projections coursing to the ventral area of the telencephalon through the medial olfactory tract. This extrabulbar projection was confirmed by tract-tracing with DiI. A loose association of this extrabulbar primary olfactory projection and the catecholaminergic populations of the ventral area was also observed with double tyrosine hydroxylase/KLH-like immunohistochemistry. Comparison between KLH-like-ir pathways and the structures revealed by FMRFamide immunohistochemistry (a marker of terminal ganglion cells and fibers) indicated that the KLH-like-ir extrabulbar projection was different from the terminal nerve system. The significance of the extrabulbar olfactory projection of zebrafish is discussed.
The olfactory mucosa of the zebrafish consists of 3 morphological types of olfactory receptor neurons (ORNs): ciliated, microvillous, and crypt cells. Previous studies in the zebrafish have revealed differential projections of ciliated and microvillous ORNs, which project to different glomerular fields. However, the bulbar targets of zebrafish crypt cells were not identified. Here, we analyze the relationship between crypt cells of the olfactory epithelium and dorsal glomerular fields of the zebrafish olfactory bulbs, as wells as the connections between these bulbar regions and forebrain regions. For this purpose, a lipophilic carbocyanine tracer (DiI) was used in fixed tissue. Application of DiI to the dorsomedial glomerular field mainly labeled crypt cells in the zebrafish olfactory epithelium. By contrast, application of DiI to the dorsolateral glomerular fields mainly labeled bipolar ORNs and only occasionally crypt cells. Bulbar efferent cells (mitral cells) contacting these dorsal glomerular fields project to different telencephalic areas, with the posterior zone of the dorsal telencephalic area (Dp) as the common target. However, dorsomedial and dorsolateral glomerular fields projected differentially to the ventral telencephalon, the former projecting to the ventrolateral supracommissural region. Retrograde labeling from the ventrolateral supracommissural region revealed mitral cells associated with 2 large glomeruli in the bulbar dorsomedial region, which putatively receives inputs from the crypt cells, indicating the existence of a crypt cell olfactory subsystem with separate projections, in the zebrafish. The comparative significance of the secondary olfactory pathways of zebrafish that convey information from crypt cells is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.