Some species of microalgae have high productivity and lipid content, which makes them good candidates for biodiesel production. Biomass separation and cell disruption are important steps in biodiesel production from microalgae. In this work, we explored the fundamentals of electroflotation by alternating current (EFAC) with non-consumable electrodes to simultaneously harvest microalgae and disrupt cells from mixed microalgae obtained from waste stabilization ponds. The harvesting efficiency was evaluated using chlorophyll-a and turbidity, which reached removals of 99% and 95%, respectively, during a batch time of 140 min. Cell disruption was evaluated using lipid extraction, and the best results were achieved with a batch time of 140 min, which resulted in a 14% yield. Therefore, EFAC was shown to be an attractive potential technology for simultaneous microalgal harvesting and cell disruption.
This work aimed to investigate algal diversity at the genus level in stabilization pond systems treating domestic wastewater and to evaluate the feasibility of an electroflotation by alternate current (EFAC) system for simultaneous microalgae separation and cell disruption. Evaluation of algal diversity showed that the genera Euglena and Chlorella were present in relatively high frequencies in five of the six effluents analyzed. The use of EFAC on an effluent that presented bloom of Chlorella achieved turbidity and chlorophyll-a removal efficiencies higher than 70 and 90%, respectively, after 70 minutes of operation. Total lipid yield for the Chlorella-rich biomass was 21.4±2.02%. Such high biomass lipid content demonstrates the potential for obtaining lipid-based biofuels from wastes. The current paper describes the first attempt, with promising results, at using electroflotation by alternate current for low cost, simultaneous microalgae harvesting and disruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.