Chlorpyrifos (CPF) is an organophosphate pesticide widely used in intensive agriculture. Various studies have demonstrated delayed neurotoxic effects in adult mammals after acute CPF exposure. This pesticide induces oxidative stress and neuronal damage, which suggests a possible relationship between CPF exposure and Alzheimer's disease (AD). In the present study, we examined in a mice model of AD, long-term changes in the behavior and brain levels of amyloid β after acute CPF exposure. Fifty mg/kg of CPF were subcutaneously injected to Tg2576 (Tg) mice carrying the Swedish amyloid-β protein precursor (AβPP) mutation for AD. General status, body weight, acetyl cholinesterase (AChE) inhibition, and behavioral changes were assessed. Amyloid β fragment (1-40 and 1-42) levels were also measured in the cortical and hippocampal brain regions. A significant and transient decrease in body weight was observed 72 hr after treatment, while no autonomic effects were noted. Motor activity was decreased in Tg mice seven months after CPF treatment. Acquisition learning in a water maze task was not affected, but retention was ameliorated in CPF-exposed Tg mice. Amyloid β levels increased in the brains of treated Tg mice eight months after CPF exposure. The results of this study show that some behavioral changes persisted or emerged months after acute CPF exposure, while amyloid β levels increased. These findings raise concern about the risk of developing neurodegenerative diseases following moderate exposure to CPF in vulnerable subjects.
Background: Brain oxidative lipid damage and inflammation are common in neurodegenerative diseases such as Alzheimer’s disease (AD). Paraoxonase-1 and -3 (PON1 and PON3) protein expression was demonstrated in tissue with no PON1 or PON3 gene expression. In the present study, we examine differences in PON1 and PON3 protein expression in the brain of a mouse model of AD. Methods: we used peroxidase- and fluorescence-based immunohistochemistry in five brain regions (olfactory bulb, forebrain, posterior midbrain, hindbrain and cerebellum) of transgenic (Tg2576) mice with the Swedish mutation (KM670/671NL) responsible for a familial form of AD and corresponding wild-type mice. Results: We found intense PON1 and PON3-positive staining in star-shaped cells surrounding Aβ plaques in all the studied Tg2576 mouse-brain regions. Although we could not colocalize PON1 and PON3 with astrocytes (star-shaped cells in the brain), we found some PON3 colocalization with microglia. Conclusions: These results suggest that (1) PON1 and PON3 cross the blood–brain barrier in discoidal high-density lipoproteins (HDLs) and are transferred to specific brain-cell types; and (2) PON1 and PON3 play an important role in preventing oxidative stress and lipid peroxidation in particular brain-cell types (likely to be glial cells) in AD pathology and potentially in other neurodegenerative diseases as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.