Microbial diversity has been pointed out as a major factor in the development and progression of colorectal cancer (CRC). We sought to explore the richness and abundance of the microbial community of a series of colorectal tumor samples treated at Barretos Cancer Hospital, Brazil, through 16S rRNA sequencing. The presence and the impact of Fusobacterium nucleatum ( Fn ) DNA in CRC prognosis was further evaluated by qPCR in a series of 152 CRC cases. An enrichment for potentially oncogenic bacteria in CRC was observed, with Fusobacterium being the most abundant genus in the tumor tissue. In the validation dataset, Fn was detected in 35/152 (23.0%) of fresh-frozen tumor samples and in 6/57 (10.5%) of paired normal adjacent tissue, with higher levels in the tumor ( p = 0.0033). Fn DNA in the tumor tissue was significantly associated with proximal tumors ( p = 0.001), higher depth of invasion ( p = 0.014), higher clinical stages ( p = 0.033), poor differentiation ( p = 0.011), MSI-positive status ( p < 0.0001), BRAF mutated tumors ( p < 0.0001), and the loss of expression of mismatch-repair proteins MLH1 ( p < 0.0001), MSH2 ( p = 0.003), and PMS2 ( p < 0.0001). Moreover, the presence of Fn DNA in CRC tissue was also associated with a worse patient cancer-specific survival (69.9 vs. 82.2% in 5 years; p = 0.028) and overall survival (63.5 vs. 76.5%; p = 0.037). Here we report, for the first time, the association of F. nucleatum presence with important clinical and molecular features in a Brazilian cohort of CRC patients. Tumor detection and classification based on the gut microbiome might provide a promising approach to improve the prediction of patient outcome.
Colorectal cancer (CRC) is one of the most frequent and deadly neoplasms worldwide. Genetic factors, lifestyle habits, and inflammation are important risk factors associated with CRC development. In recent years, growing evidence has supporting the significant role of the intestinal microbiome in CRC carcinogenesis. Disturbances in the healthy microbial balance, known as dysbiosis, are frequently observed in these patients. Pathogenic microorganisms that induce intestinal dysbiosis have become an important target to determine the role of bacterial infection in tumorigenesis. Interestingly, the presence of different bacterial strains, such as <i>Fusobacterium nucleatum</i>, has been detected in tissue and stool from patients with CRC and associated with substantial clinical and molecular features, as well as with patient therapy response. Therefore, understanding how the presence and levels of <i>F. nucleatum</i>strains in the gut affect the risk of CRC onset and progression may inform suitable candidates for interventions focused on modulation of this bacteria. Here we review new insights into the role of gut microbiota in CRC carcinogenesis and the clinical utility of using the detection of <i>F. nucleatum</i> in different settings such as screening, prognosis, and microbiota modulation as a means to prevent cancer, augment therapies, and reduce adverse effects of treatment.
The use of droplet digital PCR (ddPCR) to identify and quantify low-abundance targets is a significant advantage for accurately detecting potentially oncogenic bacteria. Fusobacterium nucleatum (Fn) is implicated in colorectal cancer (CRC) tumorigenesis and is becoming an important prognostic biomarker. We evaluated the detection accuracy and clinical relevance of Fn DNA by ddPCR in a molecularly characterized, formalin-fixed, paraffin-embedded (FFPE) CRC cohort previously analyzed by qPCR for Fn levels. Following a ddPCR assay optimization and an analytical evaluation, Fn DNA were measured in 139 CRC FFPE cases. The measures of accuracy for Fn status compared to the prior results generated by qPCR and the association with clinicopathological and molecular patients’ features were also evaluated. The ddPCR-based Fn assay was sensitive and specific to positive controls. Fn DNA were detected in 20.1% of cases and further classified as Fn-high and Fn-low/negative, according to the median amount of Fn DNA that were detected in all cases and associated with the patient’s worst prognosis. There was a low agreement between the Fn status determined by ddPCR and qPCR (Cohen’s Kappa = 0.210). Our findings show that ddPCR can detect and quantify Fn in FFPE tumor tissues and highlights its clinical relevance in Fn detection in a routine CRC setting.
The development of new screening methods and diagnostic tests for traits, common diseases, and cancer is linked to the advent of precision genomic medicine, in which health care is individually adjusted based on a person’s lifestyle, environmental influences, and genetic variants. Based on genome-wide association study (GWAS) analysis, rapid and continuing progress in the discovery of relevant single nucleotide polymorphisms (SNPs) for traits or complex diseases has increased interest in the potential application of genetic risk models for routine health practice. The polygenic risk score (PRS) estimates an individual’s genetic risk of a trait or disease, calculated by employing a weighted sum of allele counts combined with non-genetic variables. However, 98.38% of PRS records held in public databases relate to the European population. Therefore, PRSs for multiethnic populations are urgently needed. We performed a systematic review to discuss the role of polygenic risk scores in advancing precision medicine for different cancer types in multiethnic non-European populations.
Conclusion: There were no statistical differences in terms of ORR and PFS between bevacizumab or aflibercept plus FOLFIRI in 2nd line treatment of pts with mCRC. AEs were more often seen in the aflibercept group except for thrombosis.Legal entity responsible for the study: The authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.