Honeybees are essential pollinators of many agricultural crops and wild plants. However, the number of managed bee colonies has declined in some regions of the world over the last few decades, probably caused by a combination of factors including parasites, pathogens and pesticides. Exposure to these diverse biotic and abiotic stressors is likely to trigger immune responses and stress pathways that affect the health of individual honeybees and hence their contribution to colony survival. We therefore investigated the effects of an orally administered bacterial pathogen (Pseudomonas entomophila) and low-dose xenobiotic pesticides on honeybee survival and intestinal immune responses. We observed stressor-dependent effects on the mean lifespan, along with the induction of genes encoding the antimicrobial peptide abaecin and the detoxification factor cytochrome P450 monooxygenase CYP9E2. The pesticides also triggered the immediate induction of a nitric oxide synthase gene followed by the delayed upregulation of catalase, which was not observed in response to the pathogen. Honeybees therefore appear to produce nitric oxide as a specific defense response when exposed to xenobiotic stimuli. The immunity-related and stress-response genes we tested may provide useful stressor-dependent markers for ecotoxicological assessment in honeybee colonies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.