The present work provides a critical overview of how Pt-based nanosystems can play a leading role in new cancer therapies and excel beyond their well-established performance in “classic” catalytic processes.
The present review aims at highlighting recent advances in the development of photocatalysts devoted to cancer therapy applications. We pay especial attention to the engineering aspects of different nanomaterials including inorganic semiconductors, organic-based nanostructures, noble metal-based systems or synergistic hybrid heterostructures. Furthermore, we also explore and correlate structural and optical properties with their photocatalytic capability to successfully performing in cancer-related therapies. We have made an especial emphasis to introduce current alternatives to organic photosensitizers (PSs) in photodynamic therapy (PDT), where the effective generation of reactive oxidative species (ROS) is pivotal to boost the efficacy of the treatment. We also overview current efforts in other photocatalytic strategies to tackle cancer based on photothermal treatment, starvation therapy, oxidative stress unbalance via glutathione (GSH) depletion, biorthogonal catalysis or local relief of hypoxic conditions in tumor microenvironments (TME).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.