Lactobacillus spp. from Mexican Cocido cheese were shown to produce bacteriocin-like substances (BLS) active against Staphylococcus aureus,Listeria innocua,Escherichia coli, andSalmonella typhimurium by using the disk diffusion method. Crude extracts of Lactobacillus fermentum showed strong inhibitory activity against Staph. aureus, L. innocua, E. coli, and Salmonella cholerae. Complete inactivation of antimicrobial activity was observed after treatment of crude extracts with proteinase K, pronase, papain, trypsin, and lysozyme, confirming their proteinaceous nature. However, antimicrobial activity was partly lost for some of the crude extracts when treated with α-amylase, indicating that carbohydrate moieties were involved. The antimicrobial activity of the crude extracts was stable at 65°C for 30min over a wide pH range (2-8), and addition of potassium chloride, sodium citrate, ethanol, and butanol did not affect antibacterial activity. However, antimicrobial activity was lost after heating at 121°C for 15min, addition of methanol or Tween 80. Fourteen out of 18 Lactobacillus spp. showed antimicrobial activity against different test microorganisms, and 12 presented bacteriocin-like substances. Generation time and growth rate parameters indicated that the antimicrobial activity of crude extracts from 3 different strains was effective against the 4 indicator microorganisms. One of the crude extracts showed inhibition not only against gram-positive but also against gram-negative bacteria. Bacteriocin-like substances produced by this specific Lactobacillus strain showed potential for application as a food biopreservative.
Lactococcus lactis is the lactic acid bacteria most frequently used for the production of cheese starter cultures, mainly because of their efficient production of aroma compounds. However, commercial cultures do not always produce the typical aroma notes of artisanal raw-milk cheeses. Thus, the objective of this study was to characterize the volatile compounds generated by wild L. lactis strains in Mexican Fresco cheese made with pasteurized milk. Four strains of wild L. lactis were evaluated for their aroma production in Mexican Fresco cheese using sensory and instrumental analysis. The aroma profiles were evaluated by descriptive sensory analysis. Volatiles were determined by solid-phase microextraction and gas chromatography-mass spectrometry. Principal component analysis was applied to interpret analytical and sensory data. Mexican Fresco cheese aroma was described as milkfat, yogurt, yeasty, barny, dirty socks, and Fresco cheese. Cheese with L. lactis strains R7 or B7 were most similar to commercial raw milk Fresco cheese in all aroma descriptors. Volatiles identified in all cheeses were esters, acids, alcohols, ketones, and aldehydes, but the main differences were found for total volatile relative abundance. Also, volatile concentrations (µg/g) in commercial raw milk Fresco cheese and cheeses made with L. lactis R7 or B7 were 4 methyl esters [C4 (4.
This study provides more information on one of the most popular artisanal cheeses with high cultural value and economic impact in northwestern Mexico. In view of the foregoing, good manufacturing practices need to be implemented for the manufacture of Cocido cheese. Also, it is of utmost importance to make sure that the heat treatment applied for cooking the curd ensures a phosphatase-negative test, otherwise it would be necessary to pasteurize milk. Nevertheless, since Cocido cheese is a non-ripened, high-moisture product, it is a highly perishable product that could present a health risk if not properly handled. © 2017 Society of Chemical Industry.
The aim of the present study was to characterise the physicochemical and the microbiota composition of the artisanal Fresco cheese from Sonora. For this, cheeses of 18 small-scale artisanal dairies were analysed. The chemical composition and the microbiological quality were determined by standard methods, and bacterial diversity by high-throughput sequencing. The physicochemical composition showed differences (P < 0.05) among dairies, and the principal component analysis aggrupation of 66% dairies. The analysis by region did not show difference (P < 0.05).The microbiota most abundant were Firmicutes, Proteobacteria and lactic acid bacteria in phyla and genera, respectively. These results provide insights on the characterisation of the Fresco cheese from Sonora.
This study aims to analyze the chemical and microbial composition and characterize volatile compounds from the artisanal and commercial Tejuino beverage. For this, eight samples are analyzed (four artisanal and four commercial). The chemical and microbiological quality is determined by standard methods, and volatile compounds are determined by solid-phase microextraction. Overall, the physicochemical composition and microbiological quality are higher for artisanal Tejuino (p < 0.05). The pH values were 3.20 and 3.62, and 0.76 and 0.46 meq of lactic acid for artisanal and commercial Tejuino, respectively. With volatile compounds analyzed, esters, benzenes, and aldehydes were predominant; meanwhile, ethanol was a volatile compound with the highest concentration for all samples. Saccharomyces cerevisiae and Limosilactobacillus fermentum were identified in artisanal Tejuino; yeasts of the Pichia genera and Lactiplantibacillus plantarum, for commercial Tejuino, and Enterococcus genus were identified in both samples. The characterization of both types of Tejuino allows us to update the information available on this important Mexican beverage. In addition, the isolation of lactic acid bacteria, as representative bacteria of both drinks, offers an area of opportunity to know the potential functionality of these bacteria in traditional fermented products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.