COVID-19 has changed our lives forever. The world we knew until now has been transformed and nowadays we live in a completely new scenario in a perpetual restructuring transition, in which the way we live, relate, and communicate with others has been altered permanently. Within this context, risk communication is playing a decisive role when informing, transmitting, and channeling the flow of information in society. COVID-19 has posed a real pandemic risk management challenge in terms of impact, preparedness, response, and mitigation by governments, health organizations, non-governmental organizations (NGOs), mass media, and stakeholders. In this study, we monitored the digital ecosystems during March and April 2020, and we obtained a sample of 106,261 communications through the analysis of APIs and Web Scraping techniques. This study examines how social media has affected risk communication in uncertain contexts and its impact on the emotions and sentiments derived from the semantic analysis in Spanish society during the COVID-19 pandemic.
A problem that we had encountered in the aggregation process is how to aggregate the elements that have cardinality greater than one. The most common operators used in the aggregation process produce reasonable results, but, at the same time, when the items to aggregate have cardinality greater than one, they may produce distributed problems. The purpose of this article is to present a new neat ordered weighting averaging (OWA) operator that uses the cardinality of these elements to calculate their weights.
Countries differ with regard to culture, employment laws and employment traditions and practices, all of which suggest that employees may have different perceptions of the degree to which their company is transparent about pay as well as their own preferences for pay transparency. This study examines, from an employee perspective, how pay transparency and pay transparency preferences differ across multiple countries in Central America, North America and Europe. Pay communications, pay transparency and pay transparency preferences differed among respondents of the countries studied. However, Hofstede’s culture l country measures, uncertainty avoidance, lower levels of individualism and lower levels of power distance were not associated with preferences for pay transparency as might be expected from the literature. Although pay transparency preferences are not related to employee perceptions regarding employer pay communications, pay transparency preferences are related to pay transparency.
Objective masticatory performance assessment using two-coloured specimens relies on image processing techniques; however, just a few approaches have been tested and no comparative studies are reported. The aim of this study was to present a selection procedure of the optimal image analysis method for masticatory performance assessment with a given two-coloured chewing gum. Dentate participants (n = 250; 25 ± 6·3 years) chewed red-white chewing gums for 3, 6, 9, 12, 15, 18, 21 and 25 cycles (2000 samples). Digitalised images of retrieved specimens were analysed using 122 image processing methods (IPMs) based on feature extraction algorithms (pixel values and histogram analysis). All IPMs were tested following the criteria of: normality of measurements (Kolmogorov-Smirnov), ability to detect differences among mixing states (anova corrected with post hoc Bonferroni) and moderate-to-high correlation with the number of cycles (Spearman's Rho). The optimal IPM was chosen using multiple criteria decision analysis (MCDA). Measurements provided by all IPMs proved to be normally distributed (P < 0·05), 116 proved sensible to mixing states (P < 0·05), and 35 showed moderate-to-high correlation with the number of cycles (|ρ| > 0·5; P < 0·05). The variance of the histogram of the Hue showed the highest correlation with the number of cycles (ρ = 0·792; P < 0·0001) and the highest MCDA score (optimal). The proposed procedure proved to be reliable and able to select the optimal approach among multiple IPMs. This experiment may be reproduced to identify the optimal approach for each case of locally available test foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.