With high levels of wind energy penetration, the frequency response of isolated power systems is more likely to be affected in the event of a sudden frequency disturbance or fluctuating wind conditions. In order to minimize excessive frequency deviations, several techniques and control strategies involving Variable Speed Wind Turbines (VSWTs) have been investigated in isolated power systems. In this paper, the main benefits and disadvantages of introducing VSWTs—both their inertial contribution and primary frequency regulation—in an exclusively renewable isolated power system have been analyzed. Special attention has been paid to the influence of the delays of control signals in the wind farm when VSWTs provide primary regulation as well as to the wind power reserve value which is needed. To achieve this objective, a methodology has been proposed and applied to a case study: El Hierro power system. A mathematical dynamic model of the isolated power system, including exclusively renewable technologies, has been described. Representative generation schedules and wind speed signals have been fixed according to the observed system. Finally, in order to obtain conclusions, realistic system events such as fluctuations in wind speed and the outage of the generation unit with the higher assigned power in the power system have been simulated.
Over the last two decades, variable renewable energy technologies (i.e., variable-speed wind turbines (VSWTs) and photovoltaic (PV) power plants) have gradually replaced conventional generation units. However, these renewable generators are connected to the grid through power converters decoupled from the grid and do not provide any rotational inertia, subsequently decreasing the overall power system’s inertia. Moreover, the variable and stochastic nature of wind speed and solar irradiation may lead to large frequency deviations, especially in isolated power systems. This paper proposes a hybrid wind–PV frequency control strategy for isolated power systems with high renewable energy source integration under variable weather conditions. A new PV controller monitoring the VSWTs’ rotational speed deviation is presented in order to modify the PV-generated power accordingly and improve the rotational speed deviations of VSWTs. The power systems modeled include thermal, hydro-power, VSWT, and PV power plants, with generation mixes in line with future European scenarios. The hybrid wind–PV strategy is compared to three other frequency strategies already presented in the specific literature, and gets better results in terms of frequency deviation (reducing the mean squared error between 20% and 95%). Additionally, the rotational speed deviation of VSWTs is also reduced with the proposed approach, providing the same mean squared error as the case in which VSWTs do not participate in frequency control. However, this hybrid strategy requires up to a 30% reduction in the PV-generated energy. Extensive detailing of results and discussion can be also found in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.