Given an object of interest that evolves in time, one often wants to detect possible changes in its properties. The first changes may be small and occur in different scales and it may be crucial to detect them as early as possible. Examples include identification of potentially malignant changes in skin moles or the gradual onset of food quality deterioration. Statistical scale-space methodologies can be very useful in such situations since exploring the measurements in multiple resolutions can help identify even subtle changes. We extend a recently proposed scale-space methodology to a technique that successfully detects such small changes and at the same time keeps false alarms at a very low level. The potential of the novel methodology is first demonstrated with hyperspectral skin mole data artificially distorted to include a very small change. Our real data application considers hyperspectral images used for food quality detection. In these experiments the performance of the proposed method is either superior or on par with a standard approach such as principal component analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.