Institute of Electrical and Electronics Engineers (IEEE)CobosAbstract-The Steered Response Power -Phase Transform (SRP-PHAT) algorithm has been shown to be one of the most robust sound source localization approaches operating in noisy and reverberant environments. However, its practical implementation is usually based on a costly fine grid-search procedure, making the computational cost of the method a real issue. In this paper, we introduce an effective strategy that extends the conventional SRP-PHAT functional with the aim of considering the volume surrounding the discrete locations of the spatial grid. As a result, the modified functional performs a full exploration of the sampled space rather than computing the SRP at discrete spatial positions, increasing its robustness and allowing for a coarser spatial grid. To this end, the Generalized Cross-Correlation (GCC) function corresponding to each microphone pair must be properly accumulated according to the defined microphone setup. Experiments carried out under different acoustic conditions confirm the validity of the proposed approach.Index Terms-sound source localization, SRP-PHAT, microphone array.
Source localization using the steered response power (SRP) usually requires a costly grid-search procedure. To address this issue, a modified SRP algorithm was recently introduced, providing improved robustness when using coarser spatial grids. In this letter, an iterative method based on the modified SRP is presented. A coarse spatial grid is initially evaluated with the modified SRP, selecting the point with the highest accumulated value. Then, its corresponding volume is iteratively decomposed by using a finer spatial grid. Experiments have shown that this method provides almost the same accuracy as the fine-grid search with a substantial reduction of functional evaluations.
Localization of sounds in physical space plays a very important role in multiple audio-related disciplines, such as music, telecommunications, and audiovisual productions. Binaural recording is the most commonly used method to provide an immersive sound experience by means of headphone reproduction. However, it requires a very specific recording setup using high-fidelity microphones mounted in a dummy head. In this paper, we present a novel processing framework for binaural sound recording and reproduction that avoids the use of dummy heads, which is specially suitable for immersive teleconferencing applications. The method is based on a time-frequency analysis of the spatial properties of the sound picked up by a simple tetrahedral microphone array, assuming source sparseness. The experiments carried out using simulations and a real-time prototype confirm the validity of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.