A fast and accurate algorithm for solving a Bernstein-Vandermonde linear system is presented. The algorithm is derived by using results related to the bidiagonal decomposition of the inverse of a totally positive matrix by means of Neville elimination. The use of explicit expressions for the determinants involved in the process serves to make the algorithm both fast and accurate.
When using bivariate polynomial interpolation for computing the implicit equation of a rational plane algebraic curve given by its parametric equations, the generation of the interpolation data is the most costly of the two stages of the process. In this work a new way of generating those interpolation data with less computational cost is presented. The method is based on an efficient computation of the determinants of certain constant Bézout matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.