Europe has become heavily dependent on soya bean imports, entailing trade agreements and quality standards that do not satisfy the European citizen’s expectations. White, yellow, and narrow-leafed lupins are native European legumes that can become true alternatives to soya bean, given their elevated and high-quality protein content, potential health benefits, suitability for sustainable production, and acceptability to consumers. Nevertheless, lupin cultivation in Europe remains largely insufficient to guarantee a steady supply to the food industry, which in turn must innovate to produce attractive lupin-based protein-rich foods. Here, we address different aspects of the food supply chain that should be considered for lupin exploitation as a high-value protein source. Advanced breeding techniques are needed to provide new lupin varieties for socio-economically and environmentally sustainable cultivation. Novel processes should be optimized to obtain high-quality, safe lupin protein ingredients, and marketable foods need to be developed and offered to consumers. With such an integrated strategy, lupins can be established as an alternative protein crop, capable of promoting socio-economic growth and environmental benefits in Europe.
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Strong illumination of Cu(II)-inhibited photosystem II membranes resulted in a faster loss of oxygen evolution activity compared with that of the intact samples. The phenomenon was oxygen-and temperature-dependent. However, D1 protein degradation rate was similar in both preparations and slower than that found in nonoxygen evolving PSII particles (i.e. Mn-depleted photosystem II). These results seem to indicate that during illumination Cu(II)-inhibited samples do not behave as a typical non-oxygen evolving photosystem II. Cytochrome b 559 was functional in the presence of Cu(II). The effect of Cu(II) inhibition decreased the amount of photoreduced cytochrome b 559 and slowed down the rate of its photoreduction. The presence of Cu(II) during illumination seems to protect P680 against photodamage as occurs in photosystem II reaction centers when the acceptor side is protected. The data were consistent with the finding that production of singlet oxygen was highly reduced in the preparations treated with Cu(II). EPR spin trapping experiments showed that inactivation of Cu(II)-treated samples was dominated by hydroxyl radical, and the loss of oxygen evolution activity was diminished by the presence of superoxide dismutase and catalase. These results indicate that the rapid loss of oxygen evolution activity in the presence of Cu(II) is mainly due to the formation of ⅐ OH radicals from superoxide ion via a Cu(II)-catalyzed Haber-Weiss mechanism. Considering that this inactivation process was oxygen-dependent, we propose that the formation of superoxide occurs in the acceptor side of photosystem II by interaction of molecular oxygen with reduced electron acceptor species, and thus, the primarily Cu(II)-inhibitory site in photosystem II is on the acceptor side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.