The development of tolerance in Pseudomonas putida DOT-T1 to toluene and related highly toxic compounds involves short-and long-term responses. The short-term response is based on an increase in the rigidity of the cell membrane by rapid transformation of the fatty acid cis-9,10-methylene hexadecanoic acid (C17:cyclopropane) to unsaturated 9-cis-hexadecenoic acid (C16:1,9 cis) and subsequent transformation to the trans isomer. The long-term response involves in addition to the changes in fatty acids, alterations in the level of the phospholipid polar head groups: cardiolipin increases and phosphatidylethanolamine decreases. The two alterations lead to increased cell membrane rigidity and should be regarded as physical mechanisms that prevent solvent penetrance. Biochemical mechanisms that decrease the concentration of toluene in the cell membrane also take place and involve: (i) a solvent exclusion system and (ii) metabolic removal of toluene via oxidation. Mutants unable to carry out cis 3 trans isomerization of unsaturated lipids, that exhibit altered cell envelopes because of the lack of the OprL protein, or that are unable to exclude toluene from cell membranes are hypersensitive to toluene.Organic solvents with a logP OW value (logarithm of the partition coefficient of the target compound in a mixture of octanol/ water) between 1.5 and 3 are extremely toxic to microorganisms, a characteristic that has been well documented for toluene (logP OW 2.5) (1-4). De Smet et al. (2) demonstrated that toluene destabilizes the inner membrane of Gram-negative bacteria, causing a transition from a lamellar bilayer state to a hexagonal state, which results in the leakage of proteins, lipids, and ions and disruption of the cell membrane potential (1, 2). The consequent collapse of ATP synthesis together with other lesions lead to cell death.Inoue and Horikoshi (5) isolated a Pseudomonas putida strain able to grow in a double phase system that contained up to 50% (v/v) toluene, despite the fact that this microorganism was not able to use this aromatic as a carbon source. This report was followed by three independent studies that described the isolation of three different P. putida strains that tolerated related organic solvents, e.g. styrene (6), xylenes (7), and toluene (8). The toluene-tolerant isolate, called P. putida DOT-T1, metabolized toluene via the p-cresol pathway (8). The "unexpected" ability of these Pseudomonas strains to tolerate toxic solvents opens new avenues of research into cellular metabolism. In this study, we have explored the molecular basis for solvent tolerance by P. putida DOT-T1. EXPERIMENTAL PROCEDURESBacterial Strains and Culture Conditions-P. putida DOT-T1 is a solvent-tolerant strain (8), whereas P. putida mt-2 is a toluene-sensitive strain (9).Isolation of Toluene-sensitive Tn5 Mutants of P. putida DOT-T1-About 2000 Tn5 transconjugants of P. putida DOT-T1 were obtained after mating this strain with Escherichia coli (pGS9). The suicide plasmid pGS9 bears Tn5, and mutagenesis was carried out a...
SummaryPseudomonas putida KT2440 exhibits two formaldehyde dehydrogenases and two formate dehydrogenase complexes that allow the strain to stoichiometrically convert formaldehyde into CO2. The strain tolerated up to 1.5 mM formaldehyde and died in the presence of 10 mM. In the presence of 0.5 mM formaldehyde, a sublethal concentration of this chemical, the growth rate decreased by about 40% with respect to growth in the absence of the toxicant. Transcriptomic analysis revealed that in response to low formaldehyde concentrations, a limited number of genes (52) were upregulated. Based on the function of these genes it seems that sublethal concentrations of HCOH trigger responses to overcome DNA and protein damage, extrude this toxic compound, and detoxify it by converting the chemical to CO2. In strains bearing mutations of the upregulated genes we analysed growth inhibition by 1.5 mM HCOH and killing rates by 10 mM HCOH. Mutants in the MexEF/OprN efflux pump and in the DNA repair genes recA and uvrB were hypersensitive to 10 mM HCOH, the killing rate being three to four orders of magnitude higher than those in the wild‐type strain. Mutants in other upregulated genes died at slightly higher or at similar rates to the parental strain. Regarding growth inhibition, we found that mutants in glutathione biosynthesis, stress response mediated by 2‐hydroxy acid dehydrogenases and two efflux pumps of the MSF family were unable to grow in the presence of 1.5 mM HCOH. In an independent screening test we searched for mutants which were hypersensitive to formaldehyde, but whose expression did not change in response to this chemical. Two mutants with insertions in recD and fhdA were found which were unable to grow in the presence of 1.5 mM HCOH. The recD mutant was hypersensitive to 10 mM HCOH and died at a higher rate than the parental strain.
Pseudomonas putida encodes 20 extracytoplasmic sigma factors (ECFs). In this study, we show that one of these ECFs, known as ECF-Pp12 (PP3006), plays a role in tolerance of toluene and other organic solvents. Based on this finding, we have called the gene that encodes this new ECF rpoT. The rpoT gene forms an operon with the preceding gene and with the gene located downstream. The translated gene product of the open reading frame PP3005 is an inner membrane protein, whereas the PP3007 protein is periplasmic. A nonpolar ⌬rpoT mutant was generated by homologous recombination, and survival of the mutant was tested under various stress conditions. The mutant strain was hypersensitive to toluene and other solvents but just as tolerant as the wild type of stress imposed by heat, antibiotics, NaCl, paraquat, sodium dodecyl sulfate, H 2 O 2 , and benzoate. In the ⌬rpoT mutant background, expression of around 50 transcriptional units was affected: 31 cistrons were upregulated, and 23 cistrons were downregulated. This indicates that about 1% of all P. putida genes are under the direct or indirect influence of RpoT. The rpoT gene controls the expression of a number of membrane proteins, including components of the respiratory chains, porins, transporters, and multidrug efflux pumps. Hypersensitivity of the P. putida RpoT-deficient mutant to organic solvents can be attributed to the fact that in the ⌬rpoT strain, expression of the toluene efflux pump ttgGHI genes is severalfold lower than in the parental strain.In natural environments, microorganisms are exposed to changing conditions and have therefore developed a series of strategies to cope with these stressors (17, 48). With world industrialization, humans have synthesized a large number of chemicals, many of which reach the biosphere and constitute a new burden for the environment. Among the most toxic chemicals are organic solvents, such as toluene, xylenes, and styrene, which dissolve in the cell membrane, disorganize it, cause the loss of lipids and proteins, and eventually lead to cell death (8,45,56). Microorganisms have developed various mechanisms to resist the lethal effects of these chemicals. One of the most relevant of these mechanisms is the active reduction of their entry into the cells through the action of membrane efflux pumps, which belong to the group of multidrug resistance pumps (45). These efflux pumps extrude a broad range of structurally unrelated synthetic and natural chemicals and thus constitute an effective barrier against toxic chemicals.Pseudomonas putida DOT-T1E exhibits the unusual property of being highly tolerant of organic solvents (39, 47). Solvent tolerance in this strain is ultimately the result of an interplay between three efflux systems known as TtgABC, TtgDEF, and TtgGHI, which have been assigned to the root nodulation cell division family (15,45,46,55). Of these three efflux pumps, the TtgGHI pump seems to be the most critical for the removal of solvents from a quantitative point of view (51). The ttgGHI and the ttgDEF operons ...
To generate mutants with altered lipopolysaccharides (LPS) of the wild-type Pseudomonas putida KT2442, we used the mini-Tn5luxAB-Km transposon. A mutant was found among luminescent colonies and selected as a negative clone in enzyme-linked immunosorbent assay (ELISA) with monoclonal antibody (mAb) 7.3B, which recognizes the O-antigen of P. putida LPS. The DNA region of the LPS mutant interrupted by the minitransposon insertion was cloned and sequenced. Comparison of the deduced amino acid sequence with protein sequence databases showed similarity to the O-antigen polymerase (Wzy) of Salmonella enterica (muenchen). The wild-type gene was rescued by polymerase chain reaction (PCR), cloned into a broad-host-range plasmid and used to carry out complementation assays. The cloned gene was able to restore the wild-type phenotype of the P. putida wzy mutant. We constructed an isogenic mutant of the luminescent wzy mutant to which an oprL mutation was transferred by homologous recombination with an oprL::xylE cassette. The wzy mutants of P. putida were more sensitive to SDS, deoxycholate and EDTA than the corresponding parental strains. We analysed the ability of wzy, oprL and wzy oprL mutants of P. putida to colonize soil. In comparison with the wild-type strain, the ability of single mutants to colonize soil decreased; this characteristic was more evident for the double mutant, especially at high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.