Somatic embryogenesis involves different molecular events including differential gene expression and various signal transduction pathways. One of the genes identified in early somatic embryogenesis is S OMATIC E MBRYOGENESIS R ECEPTOR-like K INASE (SERK). Cocos nucifera (L.) is one of the most recalcitrant species for in vitro regeneration, achieved so far only through somatic embryogenesis, although just a few embryos could be obtained from a single explant. In order to increase efficiency of this process we need to understand it better. Therefore, the purpose of the present work was to determine if an ortholog of the SERK gene is present in the coconut genome, isolate it and analyze its expression during somatic embryogenesis. The results showed the occurrence of a SERK ortholog referred to as CnSERK. Predicted sequence analysis showed that CnSERK encodes a SERK protein with the domains reported in the SERK proteins in other species. These domains consist of a signal peptide, a leucine zipper domain, five LRR, the Serine-Proline-Proline domain, which is a distinctive domain of the SERK proteins, a single transmembrane domain, the kinase domain with 11 subdomains and the C terminal region. Analysis of its expression showed that it could be detected in embryogenic tissues before embryo development could be observed. In contrast it was not detected or at lower levels in non-embryogenic tissues, thus suggesting that CnSERK expression is associated with induction of somatic embryogenesis and that it could be a potential marker of cells competent to form somatic embryos in coconut tissues cultured in vitro.
In several models of lymphocyte apoptosis, two alterations of mitochondrial function precede advanced DNA fragmentation: (1) a reduction of mitochondrial transmembrane potential (delta psi m) and (2) an increase in mitochondrial generation of superoxide anion. Here we show that two fluorochromes allow for the identification of analogous mitochondrial perturbations in circulating T lymphocytes from human immunodeficiency virus (HIV)-1+ donors. The first among these fluorochromes, the cationic lipophilic dye DiOC6(3), measures delta psi m; the second marker, hydroethidine (HE), is nonfluorescent, unless it is oxidized by superoxide anions to the product ethidium (Eth). CD4+ or CD8+ cells from clinically asymptomatic HIV-1 carriers contain a significantly elevated percentage of cells endowed with enhanced HE --> Eth conversion and/or reduced DiOC6(3) uptake as compared with normal controls. Phenotypic characterization of (HE --> Eth)high cells from HIV+ donors shows that these cells possess a low delta psi m, thus demonstrating a functional alteration of mitochondria. In addition, (HE --> Eth)high cells display a reduced incorporation of the cardiolipin-specific dye nonyl-acridine orange (NAO), showing a structural defect of the cardiolipin-containing inner mitochondrial membrane. Control experiments involving rotenone, an inhibitor of the respiratory chain complex I, indicate that the reactive oxygen species responsible for HE --> Eth conversion is generated during mitochondrial electron transport. In synthesis, it appears that mitochondrial alterations occur in a significant percentage of circulating T lymphocytes from HIV-1 carriers. The extent of delta psi m reduction, as determined ex vivo, correlates with the frequency of cells undergoing DNA fragmentation after overnight in vitro culture. These observations may be important for the understanding and for the direct ex vivo quantitation of HIV-triggered lymphocyte destruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.