Human performance on visual texture discrimination tasks improves slowly (over days) in the absence of additional training. This 'slow learning' requires nocturnal sleep after training and is limited to the region of visual space in which training occurred. Here, we tested human subjects four times in one day and found that with repeated, within-day testing, perceptual thresholds actually increased progressively across the four test sessions. This performance deterioration was prevented either by shifting the target stimuli to an untrained region of visual space or by having the subjects take a mid-day nap between the second and third sessions.
Hippocampal theta waves recorded during rapid eye movement (REM) sleep are thought to play a critical role in memory consolidation in lower mammals, but previous attempts to detect similar theta oscillations in the human hippocampus have been unsuccessful. Using subdural and depth recordings from epileptic patients, we now report the first evidence of state-dependent hippocampal theta waves (4-7 Hz) in humans. Unlike the continuous theta in rodents, however, these oscillations were consistently observed during REM sleep in short (approximately 1 sec) bursts and during transitions to wake in longer epochs. Theta waves were also observed in the basal temporal lobe and frontal cortex during transitions from sleep to wake and in quiet wakefulness but not in REM, and they were not coherent with hippocampal theta oscillations. The absence of functional coupling between neocortex and hippocampus during theta periods indicates that multiple theta generators exist in the human brain, and that they are dynamically regulated by brain state. Gamma oscillations were also present during REM theta bursts, but the fluctuations in gamma power were not associated with theta phase, pointing out another significant difference between rodent and human theta properties. Together, these findings suggest that the generation mechanisms of theta oscillations in humans might have evolved from tonic to phasic in hippocampus during REM sleep and extended from hippocampus to cortex, where they appear in certain wakefulness-related states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.