Inhibitory neurotransmission in the brain is largely mediated by GABA(A) receptors. Potentiation of GABA receptor activation through an allosteric benzodiazepine (BZ) site produces the sedative, anxiolytic, muscle relaxant, anticonvulsant and cognition-impairing effects of clinically used BZs such as diazepam. We created genetically modified mice (alpha1 H101R) with a diazepam-insensitive alpha1 subtype and a selective BZ site ligand, L-838,417, to explore GABA(A) receptor subtypes mediating specific physiological effects. These two complimentary approaches revealed that the alpha1 subtype mediated the sedative, but not the anxiolytic effects of benzodiazepines. This finding suggests ways to improve anxiolytics and to develop drugs for other neurological disorders based on their specificity for GABA(A) receptor subtypes in distinct neuronal circuits.
Cleavage of amyloid precursor protein (APP) by the beta- and gamma-secretases generates the amino and carboxy termini, respectively, of the A beta amyloidogenic peptides A beta40 and A beta42--the major constituents of the amyloid plaques in the brain parenchyma of Alzheimer's disease patients. There is evidence that the polytopic membrane-spanning proteins, presenilin 1 and 2 (PS1 and PS2), are important determinants of gamma-secretase activity: mutations in PS1 and PS2 that are associated with early-onset familial Alzheimer's disease increase the production of A beta42 (refs 4-6), the more amyloidogenic peptide; gamma-secretase activity is reduced in neuronal cultures derived from PS1-deficient mouse embryos; and directed mutagenesis of two conserved aspartates in transmembrane segments of PS1 inactivates the ability of gamma-secretase to catalyse processing of APP within its transmembrane domain. It is unknown, however, whether PS1 (which has little or no homology to any known aspartyl protease) is itself a transmembrane aspartyl protease or a gamma-secretase cofactor, or helps to colocalize gamma-secretase and APP. Here we report photoaffinity labelling of PS1 (and PS2) by potent gamma-secretase inhibitors that were designed to function as transition state analogue inhibitors directed to the active site of an aspartyl protease. This observation indicates that PS1 (and PS2) may contain the active site of gamma-secretase. Interestingly, the intact, single-chain form of wild-type PS1 is not labelled by an active-site-directed photoaffinity probe, suggesting that intact wild-type PS1 may be an aspartyl protease zymogen.
Progressive cerebral amyloid beta-protein (A beta) deposition is believed to play a central role in the pathogenesis of Alzheimer's disease (AD). Elevated levels of A beta(42) peptide formation have been linked to early-onset familial AD-causing gene mutations in the amyloid beta-protein precursor (A beta PP) and the presenilins. Sequential cleavage of A beta PP by the beta- and gamma-secretases generates the N- and C-termini of the A beta peptide, making both the beta- and gamma-secretase enzymes potential therapeutic targets for AD. The identity of the A beta PP gamma-secretase and the mechanism by which the C-termini of A beta are formed remain uncertain, although it has been suggested that the presenilins themselves are novel intramembrane-cleaving gamma-secretases of the aspartyl protease class [Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., and Selkoe, D. J. (1999) Nature 398, 513-517]. In this study we report the identification of L-685,458 as a structurally novel inhibitor of A beta PP gamma-secretase activity, with a similar potency for inhibition of A beta(42) and A beta(40) peptides. This compound contains an hydroxyethylene dipeptide isostere which suggests that it could function as a transition state analogue mimic of an aspartyl protease. The preferred stereochemistry of the hydroxyethylene dipeptide isostere was found to be the opposite to that required for inhibition of the HIV-1 aspartyl protease, a factor which may contribute to the observed specificity of this compound. Specific and potent inhibitors of A beta PP gamma-secretase activity such as L-685,458 will enable important advances toward the identification and elucidation of the mechanism of action of this enigmatic protease.
The GABA A receptor subtypes responsible for the anxiolytic effects of nonselective benzodiazepines (BZs) such as chlordiazepoxide (CDP) and diazepam remain controversial. Hence, molecular genetic data suggest that ␣2-rather than ␣3-containing GABA A receptors are responsible for the anxiolytic effects of diazepam, whereas the anxiogenic effects of an ␣3-selective inverse agonist suggest that an agonist selective for this subtype should be anxiolytic. We have extended this latter pharmacological approach to identify a compound, 4,2Ј-difluoro-5Ј-[8-fluoro-7-(1-hydroxy-1-methylethyl)imidazo[1,2-á]pyridin-3-yl]biphenyl-2-carbonitrile (TP003), that is an ␣3 subtype selective agonist that produced a robust anxiolytic-like effect in both rodent and non-human primate behavioral models of anxiety. Moreover, in mice containing a point mutation that renders ␣2-containing receptors BZ insensitive (␣2H101R mice), TP003 as well as the nonselective agonist CDP retained efficacy in a stress-induced hyperthermia model. Together, these data show that potentiation of ␣3-containing GABA A receptors is sufficient to produce the anxiolytic effects of BZs and that ␣2 potentiation may not be necessary.
We present a comprehensive analysis of all ring systems (both heterocyclic and nonheterocyclic) in clinical trial compounds and FDA-approved drugs. We show 67% of small molecules in clinical trials comprise only ring systems found in marketed drugs, which mirrors previously published findings for newly approved drugs. We also show there are approximately 450 000 unique ring systems derived from 2.24 billion molecules currently available in synthesized chemical space, and molecules in clinical trials utilize only 0.1% of this available pool. Moreover, there are fewer ring systems in drugs compared with those in clinical trials, but this is balanced by the drug ring systems being reused more often. Furthermore, systematic changes of up to two atoms on existing drug and clinical trial ring systems give a set of 3902 future clinical trial ring systems, which are predicted to cover approximately 50% of the novel ring systems entering clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.