Abstract:When there is a production system with excess capacity, i.e., more capacity than the demand for the foreseeable future, upper management might consider utilizing only a portion of the available capacity by decreasing the number of workers or halting production on some of the machines/production lines, etc., while preserving the flexibility of the production system to satisfy demand spikes. To achieve this flexibility, upper management might be willing to attain some pre-determined/desired performance values in a production system having identical parallel machines in each work center. In this study, we propose a framework that utilizes parallel neural networks to make decisions on the availability of resources, due-date assignments for incoming orders, and dispatching rules for scheduling. This framework is applied to a flexible manufacturing system with work centers having parallel identical machines. The artificial neural networks were able to satisfactorily capture the underlying relationship between the design and control parameters of a manufacturing system and the resulting performance targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.