A mathematical model is developed to represent the one-dimensional large-strain consolidation of a fully saturated clay. The fluid limit is postulated to be that water content associated with a 'stress-free' condition of the soil, and it is taken as the reference state from which strains are measured.Experimental results from a series of permeability tests suggest that the relationship between the logarithm of the coefficient of permeability and the void ratio is not a straight line for the entire range of void ratio considered.In addition, the variation of the constrained modulus as consolidation progresses is taken into account.The resulting boundary value problem involves a nonlinear partial differential equation with void ratio as the dependent variable, and the numerical solution is accomplished by a step-by-step procedure combined with a weighted residual technique which leads to a finite element discretization in the spatial variable and a finite difference discretization in the time variable. The mathematical model is applied to four cases (two involving a salt flocculated kaolinite slurry and two involving a dispersed kaolinite slurry) in the stress range within which a 'slurry' is transformed to a 'soil'. For the particular clay (Hydrite 10) investigated it was found that classical small-strain consolidation theory can adequately describe the deformation-time response for all practical purposes after the effective consolidation stress on the slurry had exceeded a value of about 8 lb/in.2 (55 kN/ma).Un modele mathematique est utilise pour rep&enter la consolidation a une dimension a grande deformation d'une argile totalement saturee. La limite de fluidit est supposee &re la teneur en eau correspondant a une condition de sol sans contrainte et elle est prise comme base de reference a partir de laquelle les deformations sont mesurees. Des resultats experimentaux obtenus a partir d'une serie d'essais de permeabilite montrant que la relation entre le logarithme du coefficient de permeabilite et l'indice des vides n'est pas une ligne droite pour l'ensemble des indices des vides consider& dans cette etude. De plus, on tient compte de la variation du module de dtformation en fonction de la consolidation.L'ktude du problbme resultant de la prise en compte des conditions aux limites aboutit a une equation partielle differentielle non lineaire avec l'indice des vides comme variable dtpendante, et la solution numerique est obtenue par approximations successives combinees a une technique de ponderation residuelle qui conduit a une discretisation d'elements finis dans la variable espace et une discretisation de differences finies dans la variable temps. Le modele mathematique est applique a quatre.cas (deux concernant un coulis de kaolinite salee floculee et deux concernant un coulis de kaolinite diluee) dans la gamme des contraintes dans laquelle un 'coulis' est transform6 en un 'sol'. Pour une argile particulitre (Hydrite lo), la recherche a montre aue la theorie classiaue de consolidation a faible dtformation est ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.