One of the major challenges in the pulp and paper industry is taking advantage of the large amount of data generated through its processes in order to develop models for optimization purposes, mainly in the paper-making, where the current practice for solving optimization problems is the error-proofing method. First, the multi-ple linear regression technique is applied to find the variables that affect the output pressure controlling the gap of the paper sheet between the rod sizer and spooner sections, which is the main cause of paper breaks. As a measure to determine the predictive capacity of the adjusted model, the coefficient of determination (R2) and s values for the output pressure were considered, while the variance inflation factor was used to identify and elimi-nate the collinearity problem. Considering the same amount of data available by using machine learning, the regres-sion tree was the best model based on the root mean square error (RSME) and R2. To find the optimal operating con-ditions using the regression tree model as source of output pressure measurement, a full factorial design was developed. Using an alpha level of 5%, findings show that linear regression and the regression tree model found only four independent variables as significant; thus, the regression tree model demonstrated a clear advantage over the linear regression model alone by improving operating conditions and demonstrating less variability in output pressure. Furthermore, in the present work, it was demonstrated that the adjusted models with good predictive capacity can be used to design noninvasive experiments and obtain.
Currently, there are two procedures to determine the basis weight in papermaking processes: the measurements made by the quality control laboratory or the measurements made by the quality control system. This research presents an alternative to estimating basis weight-based artificial neural network (ANN) modeling. The NN architecture was constructed by trial and error, obtaining the best results using two hidden layers with 48 and 12 neurons, respectively, in addition to the input and output layers. Mean absolute error and mean absolute percentage error was used for the loss and metric functions, respectively. Python was used in the training, validation, and testing process. The results indicate that the model can reasonably determine the basis weight given the independent variables analyzed here. The R 2 {R^{2}} reached by the model was 94 %, and MAE was 12.40 grams/m2. Using the same dataset, the fine tree regression model showed an R 2 {R^{2}} of 99 % and an MAE of 3.35 grams/m2. Additionally, a dataset not included in the building process was used to validate the method’s performance. The results showed that ANN-based modeling has a higher predictive capability than the regression tree model. Therefore, this model was embedded in a graphic user interface that was developed in Python.
The capability analysis of a process against requirements is often an instrument of change. The traditional and fuzzy process capability approaches are the most useful statistical techniques for determining the intrinsic spread of a controlled process for establishing realistic specifications and use for comparative processes. In the industry, the traditional approach is the most commonly used instrument to assess the impact of continuous improvement projects. However, these methods used to evaluate process capability indices could give misleading results because the dataset employed corresponds to the final product/service measures. This paper reviews an alternative procedure to assess the fuzzy process capability indices based on the statistical methodology involved in the modeling and design of experiments. Firstly, a model with reasonable accuracy is developed using a neural network approach. This model is embedded in a graphic user interface (GUI). Using the GUI, an experimental design is carried out, first to know the membership function of the process variability and then include this variability in the model. Again, an experimental design identifies the improved operating conditions for the significative independent variables. A new dataset is generated with these operating conditions, including the minimum error reached for each independent variable. Finally, the GUI is used to get a new prediction for the response variable. The fuzzy process capability indices are determined using the triangular membership function and the predicted response values. The feasibility of the proposed method was validated using a random data set corresponding to the basis weight of a papermaking process. The results indicate that the proposed method provides a better overview of the process performance, showing its true potential. The proposed method can be considered non-invasive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.