We present a fast turnaround strategy for building depth velocity models from kinematic invariants. Our approach is based on the concept of kinematic invariants describing locally coherent events by their position and slopes in the un-migrated pre-stack domain. 3D slope tomography can be based on kinematic invariants that fully characterize the events in terms of positioning and focusing. Kinematic invariants offer a versatile tool for velocity model building as they can be derived from dip and move-out picks made either in pre-stack depth migrated (preSDM) or pre-stack time migrated (preSTM) domains, or even in the unmigrated domain. Since the invariants are in the unmigrated domain, they only need to be picked once. The classical iterative velocity update made of several iterations of RMO picking, pre-stack migration and velocity update can thus be replaced by a more efficient sequential approach involving a single preSDM and a single residual move-out (RMO) picking followed by a non-linear tomographic inversion, should the quality of the initial PreSDM be appropriate for an automated volumetric picking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.