Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to recover blood flow through primary percutaneous coronary intervention. This treatment is the gold standard therapy to restore blood flow, but paradoxically it can also induce tissue injury. A number of different studies in animal models of acute myocardial infarction (AMI) suggest that ischemia-reperfusion injury (IRI) accounts for up to 50% of the final myocardial infarct size. Oxidative stress plays a critical role in the pathological process. Iron is an essential mineral required for a variety of vital biological functions but also has potentially toxic effects. A detrimental process induced by free iron is ferroptosis, a non-apoptotic type of programmed cell death. Accordingly, efforts to prevent ferroptosis in pathological settings have focused on the use of radical trapping antioxidants (RTAs), such as liproxstatin-1 (Lip-1). Hence, it is necessary to develop novel strategies to prevent cardiac IRI, thus improving the clinical outcome in patients with ischemic heart disease. The present review analyses the role of ferroptosis inhibition to prevent heart IRI, with special reference to Lip-1 as a promising drug in this clinicopathological context.
Percutaneous coronary intervention (PCI) has long remained the gold standard therapy to restore coronary blood flow after acute myocardial infarction (AMI). However, this procedure leads to the development of increased production of reactive oxygen species (ROS) that can exacerbate the damage caused by AMI, particularly during the reperfusion phase. Numerous attempts based on antioxidant treatments, aimed to reduce the oxidative injury of cardiac tissue, have failed in achieving an effective therapy for these patients. Among these studies, results derived from the use of vitamin C (Vit C) have been inconclusive so far, likely due to suboptimal study designs, misinterpretations, and the erroneous conclusions of clinical trials. Nevertheless, recent clinical trials have shown that the intravenous infusion of Vit C prior to PCI-reduced cardiac injury biomarkers, as well as inflammatory biomarkers and ROS production. In addition, improvements of functional parameters, such as left ventricular ejection fraction (LVEF) and telediastolic left ventricular volume, showed a trend but had an inconclusive association with Vit C. Therefore, it seems reasonable that these beneficial effects could be further enhanced by the association with other antioxidant agents. Indeed, the complexity and the multifactorial nature of the mechanism of injury occurring in AMI demands multitarget agents to reach an enhancement of the expected cardioprotection, a paradigm needing to be demonstrated. The present review provides data supporting the view that an intravenous infusion containing combined safe antioxidants could be a suitable strategy to reduce cardiac injury, thus improving the clinical outcome, life quality, and life expectancy of patients subjected to PCI following AMI.
Breast cancer is the most frequent malignant neoplastic disease in women, with an estimated 2.3 million cases in 2020 worldwide. Its treatment depends on characteristics of the patient and the tumor. In the latter, characteristics include cell type and morphology, anatomical location, and immunophenotype. Concerning this latter aspect, the overexpression of the HER2 receptor, expressed in 15–25% of tumors, is associated with greater aggressiveness and worse prognosis. In recent times some monoclonal antibodies have been developed in order to target HER2 receptor overexpression. Trastuzumab is part of the monoclonal antibodies used as targeted therapy against HER2 receptor, whose major problem is its cardiac safety profile, where it has been associated with cardiotoxicity. The appearance of cardiotoxicity is an indication to stop therapy. Although the pathophysiological mechanism is poorly known, evidence indicates that oxidative stress plays a fundamental role causing DNA damage, increased cytosolic and mitochondrial ROS production, changes in mitochondrial membrane potential, intracellular calcium dysregulation, and the consequent cell death through different pathways. The aim of this review was to explore the use of antioxidants as adjuvant therapy to trastuzumab to prevent its cardiac toxicity, thus leading to ameliorate its safety profile in its administration.
Angiogenesis is a physiological process that consists of the formation of new blood vessels from preexisting ones. Angiogenesis helps in growth, development, and wound healing through the formation of granulation tissue. However, this physiological process has also been linked to tumor growth and metastasis formation. Indeed, angiogenesis has to be considered as a fundamental step to the evolution of benign tumors into malignant neoplasms. The main mediator of angiogenesis is vascular endothelial growth factor (VEGF), which is overexpressed in certain cancers. Thus, there are anti-VEGF monoclonal antibodies, such as bevacizumab, used as anti-cancer therapies. However, bevacizumab has shown adverse events, such as hypertension and proteinuria, which in the most severe cases can lead to cessation of therapy, thus contributing to worsening patients’ prognosis. On the other hand, endostatin is an endogenous protein that strongly inhibits VEGF expression and angiogenesis and shows a better safety profile. Moreover, endostatin has already given promising results on small scale clinical studies. Hence, in this review, we present data supporting the use of endostatin as a replacement for anti-VEGF monoclonal antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.