The main aim of this paper is to review Middle Permian through Middle Triassic continental successions in European. Secondly, areas of Middle-Late Permian sedimentation, the Permian-Triassic Boundary (PIB) and the onset of Triassic sedimentation at the scale of the westernmost peri-Tethyan domain are defined in order to construct palaeogeographic maps of the area and to discuss the impact of tectonics, climate and sediment supply on the preservation of continental sediment.At the scale of the western European peri-Tethyan basins, the Upper Permian is characterised by a general progradational pattern from playa-lake or floodplain to fluvial environments. In the northern Variscan Belt domain, areas of sedimentation were either isolated or connected to the large basin, which was occupied by the Zechstein Sea. In the southern Variscan Belt, during the Late Permian, either isolated endoreic basins occurred, with palaeocurrent directions indicating local sources, or basins underwent erosion and/or there was no deposition. These basins were not connected with the Tethys Ocean, which could be explained by a high border formed by Corsica-Sardinia palaeorelief and even parts of the Kabilia microplate. The palaeoflora and sedimentary environments suggest warm and semi-arid climatic conditions. At the scale of the whole study area, an unconformity (more or less angular) is observed almost everywhere between deposits of the Upper Permian and Triassic, except in the central part of the Germanic Basin. The sedimentation gap is more developed in the southern area where, in some basins, Upper Pennian sediment does not occur. The large sedimentary supply, erosion and/or lack of deposition during the Late Permian, as well as the variable palaeocurrent direction pattern between the Middle-Late Permian and the EarlyTriassic indicate a period of relief rejuvenation during the Late Pennian. During the Induan, all the intra-belt basins were under erosion and sediment was only preserved in the extra-belt domains (the northern and extreme southern domains). In the northern domain (the central part of the Germanic Basin), sediment was preserved under the same climatic conditions as during the latest Permian, whereas in the extreme southern domain, it was probably preserved in the Tethys Ocean, implying a large amount of detrital components entering the marine waters. Mesozoic sedimentation began in the early Olenekian; the ephemeral fluvial systems indicate arid climatic conditions during this period.Three distinct areas of sedimentation occur: a northern and southern domain, separated by an intra-belt domain.The latter accumulated sediments during the Early-Middle Permian and experienced erosion and/or no-deposition conditions between the Middle-Late Pennian and the beginning of Mesozoic sedimentation, dated as Anisian to Hettangian. At the top of the Lower Triassic, another tectonically induced, more or less angular unconformity is observed: the Hardegsen unconformity, which is dated as intra-Spathian and is especially found in ...
The Iberian Chain is a wide intraplate deformation zone formed by the tectonic inversion during the and basin evolution analysis, macrostructural Bouguer gravity anomaly analysis, detailed mapping and paleostress inversions have been used to prove the important role of strike slip deformation. In addition, we demonstrate that two main folding trends almost perpendicular (NE SW ID E W artd NW SE) were simultaneously active in a wide transpressive zone. The two fold trends were generated by different mechanical behaviour, induding buckling and bending under constrictive strain conditions. We propose that strain partitioning occurred with oblique compression and transpression during the Cenozoic.
The Variscan orogeny, resulting from the collision of Laurussia with Gondwana to form the supercontinent of Pangaea, was followed by a period of crustal instability and re-equilibration throughout Western and Central Europe. An extensive and significant phase of Permo-Carboniferous magmatism led to the extrusion of thick volcanic successions across the region (e.g. NE German Basin, NW part of the Polish Basin, Oslo Rift, northern Spain). Coeval transtensional activity led to the formation of more than 70 rift basins across the region. The various basins differ in terms of their form and infill according to their position relative to the Variscan orogen (i.e. internide or externide location) and to the controls that acted on basin development (e.g. basement structure configuration). This paper provides an overview of a variety of basin types, to more fully explore the controls upon the tectonomagmatic-sedimentary evolution of these important basins.
The Iberian Basin or its present-day expression, the Iberian Ranges, was refilled with red bed sediments of alluvial origin during the late Olenekian -Anisian period represented by the Cañizar (Olenekian -Anisian) and Eslida (Anisian) Formations, both commonly known as Buntsandstein facies. In the late part of the Anisian, the Tethys Sea reached the eastern side of the Iberian microplate, represented by the shallow marine facies of the Landete and Cañete Formations, also called Muschelkalk facies. The ichnites studied in this paper belong to the Anisian continental-marine transition in the SE Iberian Ranges.The Cañizar Formation shows the oldest Triassic footprints found in the Iberian Peninsula, consisting in swimming, uncomplete lacertoid three digit Rhynchosauroides traces with possibly resting (cubichnia) and furrowing (pascichnia) Cruziana/Rusophycus due to large triopsids. Specimens from Lacertoïd and Crocodiloïd groups have been collected in the Eslida Formation. Rhynchosauroides sp. is the most representative ichnospecies of the first group, while in the Crocodiloïd group, the presence of Chirotherium barthii Kaup 1835 and Isochirotherium cf coureli (Demathieu 1970) are distinctive. In the Landete Formation specimens are found from Crocodiloïd and Dinosauroïd groups. Brachychirotherium gallicum Willruth 1917, Brachychirotherium sp. and Chirotherium sp. are characteristic of the first one, and 'Coelurosaurichnus' perriauxi and cf Paratrisauropus latus as the most representative of the second group. Some of the specimens described here present ancestors in the Early Triassic and have been described in the Triassic of North America, Italy and France. Possible paleogeographical connections with faunas of SE France can be inferred.Based on different sedimentary structures and plant remains, the footprints are related to fluvial systems within huge flood plains, playa and shallow marine environments, with alternating dry and wet periods. The vertical ichnites distribution during the Anisian shows that the fauna modification was weak at a high clade level. In the Triassic of the Iberian microplate, there are no findings of traces prior to the Anisian, and the footprint content for the Middle Triassic is less diversified than in other neighbouring regions. By comparison with other western Pangea areas, there was a later appearance of the forms after the end-Permian mass extinction event in the studied area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.